Photoelectrocatalytic selective removal of group-targeting thiol-containing heterocyclic pollutants
The removal of a class of toxic thiol-containing heterocyclic pollutants from complex water matrices has great environmental significance. In this study, a novel photoanode (Au/MIL100(Fe)/TiO2) with dual recognition functions was designed for selective group-targeting photoelectrocatalytic removal o...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2023-06, Vol.452, p.131307-131307, Article 131307 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The removal of a class of toxic thiol-containing heterocyclic pollutants from complex water matrices has great environmental significance. In this study, a novel photoanode (Au/MIL100(Fe)/TiO2) with dual recognition functions was designed for selective group-targeting photoelectrocatalytic removal of thiol-containing heterocyclic pollutants from various aquatic systems. The average degradation and adsorption removal efficiency of 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and 2-mercaptobenzoxazole were still above 96.7% and 13.5% after selective treatment with Au/MIL100(Fe)/TiO2 even coexisting with 10-fold concentration of macromolecular interferents (sulfide lignin and natural organic matters) and the same concentration of micromolecular structural analogues. While they were below 71.6% and 3.9% after non-selective treatment with TiO2. Targets in the actual system were selectively removed to 0.9 µg L−1, which is 1/10 of that after non-selective treatment. FTIR, XPS and operando electrochemical infrared results proved that the highly specific recognition mechanism was mainly attributable to both the size screening of MIL100(Fe) toward targets and Au-S bond formed between -SH group of targets and Au of Au/MIL100(Fe)/TiO2. •OH are the reactive oxygen species. The degradation mechanism was further investigated via excitation-emission matrix fluorescence spectroscopy and LC-MS. This study provides new guidelines for the selective group-targeting removal of toxic pollutants with characteristic functional groups from complex water matrices.
[Display omitted]
•Fabrication of a novel Au/MIL100(Fe)/TiO2 photoanode with dual recognition functions.•Thiol-containing heterocyclic targets were selectively removed from water matrices.•Highly specific recognition relied on the size screening and Au-S bond.•Providing insights for selective removal of toxic group-targeting pollutants. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2023.131307 |