Peroxiredoxin 1 transfer during mating protects eupyrene sperm against oxdative stress in Grapholita molesta
BACKGROUND Each Grapholita molesta female only copulates once during its lifetime and thus must maintain the viability of stored eupyrene sperm for male reproductive success. The male ejaculate comprises abundant accessory gland proteins produced by the male accessory gland (AG), and many of which a...
Gespeichert in:
Veröffentlicht in: | Pest management science 2023-08, Vol.79 (8), p.2823-2830 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND
Each Grapholita molesta female only copulates once during its lifetime and thus must maintain the viability of stored eupyrene sperm for male reproductive success. The male ejaculate comprises abundant accessory gland proteins produced by the male accessory gland (AG), and many of which are major effectors for sperm storage and maintenance.
RESULTS
Here, we reported that an antioxidant protein, peroxiredoxin 1 (GmolPrx1), secreted by the male AG, is essential for protecting eupyrene sperm from oxidative stress and maintaining their quality during storage in the female bursa copulatrix (BC). Our data showed that GmolPrx1 is highly expressed in the AG of sexually mature males. The GmolPrx1 protein is localized to the cytoplasm of AG cells and delivered to the female BC during mating. Knockdown of GmolPrx1 strongly decreased the fertility of mated females. Additionally, we evaluated oxidative status in the spermatophore of females and found that the content of hydrogen peroxide increased significantly after mating with GmolPrx1 knockdown males. Finally, the quality assessment of eupyrene sperm demonstrated that the plasma membrane integrity, acrosome integrity, and DNA integrity were all severely impaired in the spermatophore of females after mating with GmolPrx1 knockdown males, which may contribute to the fertility decline in males.
CONCLUSION
Our current data demonstrated that activities of eupyrene sperm stored in females can be significantly impaired by enhanced oxidative stress through knocking down of GmolPrx1 in males. Our finding thus may further lay new foundations for the control of G. molesta through suppressing their populations by manipulating male reproductive genes. © 2023 Society of Chemical Industry.
Peroxiredoxin 1 in Grapholita molesta, secreted by the male accessory gland, is essential for protecting eupyrene sperm from oxidative stress and maintaining their quality during storage in the female bursa copulatrix. |
---|---|
ISSN: | 1526-498X 1526-4998 |
DOI: | 10.1002/ps.7458 |