Bridging Synthetic and Real Images: A Transferable and Multiple Consistency Aided Fundus Image Enhancement Framework

Deep learning based image enhancement models have largely improved the readability of fundus images in order to decrease the uncertainty of clinical observations and the risk of misdiagnosis. However, due to the difficulty of acquiring paired real fundus images at different qualities, most existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2023-08, Vol.42 (8), p.2189-2199
Hauptverfasser: Guo, Erjian, Fu, Huazhu, Zhou, Luping, Xu, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning based image enhancement models have largely improved the readability of fundus images in order to decrease the uncertainty of clinical observations and the risk of misdiagnosis. However, due to the difficulty of acquiring paired real fundus images at different qualities, most existing methods have to adopt synthetic image pairs as training data. The domain shift between the synthetic and the real images inevitably hinders the generalization of such models on clinical data. In this work, we propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation. The student network uses synthetic pairs for supervised enhancement, and regularizes the enhancement model to reduce domain-shift by enforcing teacher-student prediction consistency on the real fundus images without relying on enhanced ground-truth. Moreover, we also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network. Our MAGE-Net utilizes multi-stage enhancement module and retinal structure preservation module to progressively integrate the multi-scale features and simultaneously preserve the retinal structures for better fundus image quality enhancement. Comprehensive experiments on both real and synthetic datasets demonstrate that our framework outperforms the baseline approaches. Moreover, our method also benefits the downstream clinical tasks.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2023.3247783