Pure Dephasing of Light-Matter Systems in the Ultrastrong and Deep-Strong Coupling Regimes

Pure dephasing originates from the nondissipative information exchange between quantum systems and environments, and plays a key role in both spectroscopy and quantum information technology. Often pure dephasing constitutes the main mechanism of decay of quantum correlations. Here we investigate how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-03, Vol.130 (12), p.123601-123601, Article 123601
Hauptverfasser: Mercurio, Alberto, Abo, Shilan, Mauceri, Fabio, Russo, Enrico, Macrì, Vincenzo, Miranowicz, Adam, Savasta, Salvatore, Di Stefano, Omar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pure dephasing originates from the nondissipative information exchange between quantum systems and environments, and plays a key role in both spectroscopy and quantum information technology. Often pure dephasing constitutes the main mechanism of decay of quantum correlations. Here we investigate how pure dephasing of one of the components of a hybrid quantum system affects the dephasing rate of the system transitions. We find that, in turn, the interaction, in the case of a light-matter system, can significantly affect the form of the stochastic perturbation describing the dephasing of a subsystem, depending on the adopted gauge. Neglecting this issue can lead to wrong and unphysical results when the interaction becomes comparable to the bare resonance frequencies of subsystems, which correspond to the ultrastrong and deep-strong coupling regimes. We present results for two prototypical models of cavity quantun electrodynamics: the quantum Rabi and the Hopfield model.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.130.123601