Split dCas12a activator for lncRNA H19 activation to enhance BMSC differentiation and promote calvarial bone healing
Healing of large calvarial bone defects in adults is challenging. We previously showed that inducing chondrogenic differentiation of mesenchymal stem cells from bone marrow (BMSC) or adipose tissue (ASC) before implantation can switch the repair pathway and improve calvarial bone healing. Split dCas...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2023-06, Vol.297, p.122106-122106, Article 122106 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Healing of large calvarial bone defects in adults is challenging. We previously showed that inducing chondrogenic differentiation of mesenchymal stem cells from bone marrow (BMSC) or adipose tissue (ASC) before implantation can switch the repair pathway and improve calvarial bone healing. Split dCas12a activator is a new CRISPR activation system comprising the amino (N) and carboxyl (C) fragments of dCas12a protein, each being fused with synthetic transcription activators at both termini. The split dCas12a activator was shown to induce programmable gene expression in cell lines. Here we exploited the split dCas12a activator to activate the expression of chondroinductive long non-coding RNA H19. We showed that co-expression of the split N- and C-fragments resulted in spontaneous dimerization, which elicited stronger activation of H19 than full-length dCas12a activator in rat BMSC and ASC. We further packaged the entire split dCas12a activator system (13.2 kb) into a hybrid baculovirus vector, which enhanced and prolonged H19 activation for at least 14 days in BMSC and ASC. The extended H19 activation elicited potent chondrogenic differentiation and inhibited adipogenesis. Consequently, the engineered BMSC promoted in vitro cartilage formation and augmented calvarial bone healing in rats. These data implicated the potentials of the split dCas12a activator for stem cell engineering and regenerative medicine. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2023.122106 |