Enhanced microbial reduction of Cr(VI) in soil with biochar acting as an electron shuttle: Crucial role of redox-active moieties

Biochar has been proven to participate in the biotic reduction of hexavalent chromium (Cr(VI)) in environment since its involvement may accelerate the extracellular electron transfer (EET). However, roles of the redox-active moieties and the conjugated carbon structure of biochar in this EET process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-07, Vol.328, p.138601-138601, Article 138601
Hauptverfasser: Ren, Jia, Huang, Huang, Zhang, Zehong, Xu, Xiaoyun, Zhao, Ling, Qiu, Hao, Cao, Xinde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biochar has been proven to participate in the biotic reduction of hexavalent chromium (Cr(VI)) in environment since its involvement may accelerate the extracellular electron transfer (EET). However, roles of the redox-active moieties and the conjugated carbon structure of biochar in this EET process remain unclear. In this study, 350 °C and 700 °C were selected to produce biochar with more O-containing moieties (BC350) or more developed conjugated structures (BC700), and their performances in the microbial reduction of soil Cr(VI) were investigated. Our results showed that BC350 presented a 241% increase of Cr(VI) microbial reduction after 7-day incubation, much higher than that of BC700 (39%), suggesting that O-containing moieties might play more important roles in accelerating the EET process. Biochar, especially BC350 could serve as an electron donor for microbial anaerobic respiration, but its contribution (73.2%) as an electron shuttle for EET was dominant to the enhanced Cr(VI) reduction. The positive correlation between electron exchange capacities (EECs) of pristine and modified biochars and the corresponding maximum reduction rates of Cr(VI) evidenced the crucial role of redox-active moieties in electron shuttling. Moreover, EPR analysis suggested the nonnegligible contribution of semiquinone radicals in biochars to the accelerated EET process. This study demonstrates the crucial role of redox-active moieties, i.e., O-containing moieties in mediating the EET process during the microbial reduction of Cr(VI) in soil. Findings obtained will advance the current understanding of biochar as an electron shuttle participating in the biogeochemical processes of Cr(VI). [Display omitted] •Biochar could enhance the microbial reduction of Cr(VI) in soil extract.•Biochar as an electron shuttle for EET induced the enhanced Cr(VI) reduction.•The maximum reduction rate was positively correlated with EEC of biochar.•Semiquinone-type radicals of biochar contributed to the acceleration of EET.•Redox-active moieties on biochar determined the electron-shuttling ability.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2023.138601