Solar Panel Deployment Analysis of a Satellite System

Solar array panels of a satellite must be locked at an intended position in order to perform its mission successfully as the electric power source of a satellite. To deploy the solar panels completely, it is necessary to design the deployment mechanism which has high precision and reliability. Conse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing Machine Elements and Manufacturing, 2003, Vol.46(2), pp.508-518
Hauptverfasser: SEO, Jong-Hwi, CHAE, Jang-Soo, PARK, Tae-Won, HAN, Sang-Won, CHAI, Jang-Bom, SEO, Hyun-Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar array panels of a satellite must be locked at an intended position in order to perform its mission successfully as the electric power source of a satellite. To deploy the solar panels completely, it is necessary to design the deployment mechanism which has high precision and reliability. Consequently, the analysis on the dynamic characteristic of the deployment mechanism must be done at an initial design stage. Moreover, various the mission of a satellite has made the size of solar panels got bigger, so elastic effect has to be considered seriously to get more practical and precise analysis. In this paper, the dynamic analysis methods to predict solar panels' deployment motions are proposed. First, the method of evaluating the dynamic property of solar panels' deployment mechanism using SEH (Strain Energy Hinge) that has nonlinear buckling property is presented. Second, the analysis procedure for the multibody dynamic system with redundant constraints is also proposed. Therefore, these two proposed methods are applied to the analysis of the solar panel deployment. In addition, the reliability of proposed methods is verified by experiments.
ISSN:1344-7653
1347-538X
DOI:10.1299/jsmec.46.508