3-D AR model order selection via rank test procedure
This paper deals with the problem of three-dimensional autoregressive (3-D AR) model order estimation. We show that the information for the 3-D AR model order is implicitly contained in an appropriate matrix rank built from the autocorrelation function (ACF) of the underlying 3-D Gaussian process. E...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2006-07, Vol.54 (7), p.2672-2677 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the problem of three-dimensional autoregressive (3-D AR) model order estimation. We show that the information for the 3-D AR model order is implicitly contained in an appropriate matrix rank built from the autocorrelation function (ACF) of the underlying 3-D Gaussian process. Exploiting this property, we develop an algorithm to estimate the order (p 1 ,p 2 ,p 3 ) corresponding to the quarter-space (QS) region of support. The proposed method is based upon a rank test procedure (RTP) using singular value decomposition (SVD) and solving nonlinear system equations. Numerical simulations are presented to illustrate the performances of the proposed algorithm |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2006.874815 |