Saharan dust transport to the Caribbean during PRIDE. II - Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations
We simulate Saharan dust transport during the Puerto Rico Dust Experiment (June-July 2000) with a three-dimensional aerosol transport model driven by assimilated meteorology. The model does a reasonable job of locating the dust plume as it emerges from Africa but transports it somewhat farther south...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. D. Atmospheres 2003-08, Vol.108 (D19) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We simulate Saharan dust transport during the Puerto Rico Dust Experiment (June-July 2000) with a three-dimensional aerosol transport model driven by assimilated meteorology. The model does a reasonable job of locating the dust plume as it emerges from Africa but transports it somewhat farther south in the western North Atlantic Ocean than is seen in satellite imagery. The model is able to simulate low-level, uniformly mixed, and elevated vertical dust layer profiles over Puerto Rico similar to observations made in PRIDE. We determine that the variability in the dust vertical profile across the North Atlantic Ocean is most strongly associated with descent of the dust by sedimentation and downward vertical winds during transit rather than low-level transport directly from source regions. Wet removal plays a key role in modulating this process. Assuming our dust is 3.5 percent iron by mass, we estimate July 2000 iron deposition into the North Atlantic Ocean to be between 0.71 and 0.88 Tg, which is consistent with estimates derived from observed surface dust mass concentrations. We estimate that if annual dust deposition remains constant at five times our July 2000 estimates, there is an accumulation of 1 m of sediment from Saharan dust over the Florida peninsula every one million years. |
---|---|
ISSN: | 0148-0227 |
DOI: | 10.1029/2002JD002659 |