Uncertainty identification by the maximum likelihood method

To incorporate uncertainty in structural analysis, a knowledge of the uncertainty in the model parameters is required. This paper describes efficient techniques to identify and quantify variability in the parameters from experimental data by maximising the likelihood of the measurements, using the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2005-12, Vol.288 (3), p.587-599
Hauptverfasser: Fonseca, José R., Friswell, Michael I., Mottershead, John E., Lees, Arthur W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 3
container_start_page 587
container_title Journal of sound and vibration
container_volume 288
creator Fonseca, José R.
Friswell, Michael I.
Mottershead, John E.
Lees, Arthur W.
description To incorporate uncertainty in structural analysis, a knowledge of the uncertainty in the model parameters is required. This paper describes efficient techniques to identify and quantify variability in the parameters from experimental data by maximising the likelihood of the measurements, using the well-established Monte Carlo or perturbation methods for the likelihood computation. These techniques are validated numerically and experimentally on a cantilever beam with a point mass at an uncertain location. Results show that sufficient accuracy is attainable without a prohibitive computational effort. The perturbation approach requires less computation but is less accurate when the response is a highly nonlinear function of the parameters.
doi_str_mv 10.1016/j.jsv.2005.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27973186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X05004529</els_id><sourcerecordid>27973186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-f0b2f7506b7560a49aef5f30441342f63ec8e66aca00aa981ad3acb85725a8823</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9gysSU824njqBOq-JIqsVCJzXKcZ9UliYvtIvrvSVVmprvcc6V7CLmlUFCg4n5bbON3wQCqAuoCQJyRGYWmymUl5DmZATCWlwI-LslVjFsAaEpezshiPRoMSbsxHTLX4ZicdUYn58esPWRpg9mgf9ywH7LefWLvNt532YBp47trcmF1H_HmL-dk_fT4vnzJV2_Pr8uHVW44kym30DJbVyDauhKgy0ajrSyHsqS8ZFZwNBKF0EYDaN1IqjuuTSurmlVaSsbn5O60uwv-a48xqcFFg32vR_T7qFjd1JxKMRXpqWiCjzGgVbvgBh0OioI6alJbNWlSR00KajVpmpjFicHpwbfDoKJxOEnpXECTVOfdP_Qvz95wpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27973186</pqid></control><display><type>article</type><title>Uncertainty identification by the maximum likelihood method</title><source>Elsevier ScienceDirect Journals</source><creator>Fonseca, José R. ; Friswell, Michael I. ; Mottershead, John E. ; Lees, Arthur W.</creator><creatorcontrib>Fonseca, José R. ; Friswell, Michael I. ; Mottershead, John E. ; Lees, Arthur W.</creatorcontrib><description>To incorporate uncertainty in structural analysis, a knowledge of the uncertainty in the model parameters is required. This paper describes efficient techniques to identify and quantify variability in the parameters from experimental data by maximising the likelihood of the measurements, using the well-established Monte Carlo or perturbation methods for the likelihood computation. These techniques are validated numerically and experimentally on a cantilever beam with a point mass at an uncertain location. Results show that sufficient accuracy is attainable without a prohibitive computational effort. The perturbation approach requires less computation but is less accurate when the response is a highly nonlinear function of the parameters.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2005.07.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Journal of sound and vibration, 2005-12, Vol.288 (3), p.587-599</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-f0b2f7506b7560a49aef5f30441342f63ec8e66aca00aa981ad3acb85725a8823</citedby><cites>FETCH-LOGICAL-c328t-f0b2f7506b7560a49aef5f30441342f63ec8e66aca00aa981ad3acb85725a8823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X05004529$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Fonseca, José R.</creatorcontrib><creatorcontrib>Friswell, Michael I.</creatorcontrib><creatorcontrib>Mottershead, John E.</creatorcontrib><creatorcontrib>Lees, Arthur W.</creatorcontrib><title>Uncertainty identification by the maximum likelihood method</title><title>Journal of sound and vibration</title><description>To incorporate uncertainty in structural analysis, a knowledge of the uncertainty in the model parameters is required. This paper describes efficient techniques to identify and quantify variability in the parameters from experimental data by maximising the likelihood of the measurements, using the well-established Monte Carlo or perturbation methods for the likelihood computation. These techniques are validated numerically and experimentally on a cantilever beam with a point mass at an uncertain location. Results show that sufficient accuracy is attainable without a prohibitive computational effort. The perturbation approach requires less computation but is less accurate when the response is a highly nonlinear function of the parameters.</description><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9gysSU824njqBOq-JIqsVCJzXKcZ9UliYvtIvrvSVVmprvcc6V7CLmlUFCg4n5bbON3wQCqAuoCQJyRGYWmymUl5DmZATCWlwI-LslVjFsAaEpezshiPRoMSbsxHTLX4ZicdUYn58esPWRpg9mgf9ywH7LefWLvNt532YBp47trcmF1H_HmL-dk_fT4vnzJV2_Pr8uHVW44kym30DJbVyDauhKgy0ajrSyHsqS8ZFZwNBKF0EYDaN1IqjuuTSurmlVaSsbn5O60uwv-a48xqcFFg32vR_T7qFjd1JxKMRXpqWiCjzGgVbvgBh0OioI6alJbNWlSR00KajVpmpjFicHpwbfDoKJxOEnpXECTVOfdP_Qvz95wpA</recordid><startdate>20051206</startdate><enddate>20051206</enddate><creator>Fonseca, José R.</creator><creator>Friswell, Michael I.</creator><creator>Mottershead, John E.</creator><creator>Lees, Arthur W.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051206</creationdate><title>Uncertainty identification by the maximum likelihood method</title><author>Fonseca, José R. ; Friswell, Michael I. ; Mottershead, John E. ; Lees, Arthur W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-f0b2f7506b7560a49aef5f30441342f63ec8e66aca00aa981ad3acb85725a8823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonseca, José R.</creatorcontrib><creatorcontrib>Friswell, Michael I.</creatorcontrib><creatorcontrib>Mottershead, John E.</creatorcontrib><creatorcontrib>Lees, Arthur W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonseca, José R.</au><au>Friswell, Michael I.</au><au>Mottershead, John E.</au><au>Lees, Arthur W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty identification by the maximum likelihood method</atitle><jtitle>Journal of sound and vibration</jtitle><date>2005-12-06</date><risdate>2005</risdate><volume>288</volume><issue>3</issue><spage>587</spage><epage>599</epage><pages>587-599</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>To incorporate uncertainty in structural analysis, a knowledge of the uncertainty in the model parameters is required. This paper describes efficient techniques to identify and quantify variability in the parameters from experimental data by maximising the likelihood of the measurements, using the well-established Monte Carlo or perturbation methods for the likelihood computation. These techniques are validated numerically and experimentally on a cantilever beam with a point mass at an uncertain location. Results show that sufficient accuracy is attainable without a prohibitive computational effort. The perturbation approach requires less computation but is less accurate when the response is a highly nonlinear function of the parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2005.07.006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2005-12, Vol.288 (3), p.587-599
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_27973186
source Elsevier ScienceDirect Journals
title Uncertainty identification by the maximum likelihood method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20identification%20by%20the%20maximum%20likelihood%20method&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Fonseca,%20Jos%C3%A9%20R.&rft.date=2005-12-06&rft.volume=288&rft.issue=3&rft.spage=587&rft.epage=599&rft.pages=587-599&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2005.07.006&rft_dat=%3Cproquest_cross%3E27973186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27973186&rft_id=info:pmid/&rft_els_id=S0022460X05004529&rfr_iscdi=true