Uncertainty identification by the maximum likelihood method

To incorporate uncertainty in structural analysis, a knowledge of the uncertainty in the model parameters is required. This paper describes efficient techniques to identify and quantify variability in the parameters from experimental data by maximising the likelihood of the measurements, using the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2005-12, Vol.288 (3), p.587-599
Hauptverfasser: Fonseca, José R., Friswell, Michael I., Mottershead, John E., Lees, Arthur W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To incorporate uncertainty in structural analysis, a knowledge of the uncertainty in the model parameters is required. This paper describes efficient techniques to identify and quantify variability in the parameters from experimental data by maximising the likelihood of the measurements, using the well-established Monte Carlo or perturbation methods for the likelihood computation. These techniques are validated numerically and experimentally on a cantilever beam with a point mass at an uncertain location. Results show that sufficient accuracy is attainable without a prohibitive computational effort. The perturbation approach requires less computation but is less accurate when the response is a highly nonlinear function of the parameters.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2005.07.006