Amplified Spontaneous Emission and Lasing from Zn-Processed AgIn5S8 Core/Shell Quantum Dots
I–III–VI ternary quantum dots (QDs) have emerged as favorable alternatives to the toxic II–VI QDs for optoelectronic and biological applications. However, their use as optical gain media for microlasers is still limited by a low fluorescence efficiency. Here, we demonstrate amplified spontaneous emi...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-04, Vol.15 (15), p.19330-19336 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I–III–VI ternary quantum dots (QDs) have emerged as favorable alternatives to the toxic II–VI QDs for optoelectronic and biological applications. However, their use as optical gain media for microlasers is still limited by a low fluorescence efficiency. Here, we demonstrate amplified spontaneous emission (ASE) and lasing from colloidal QDs of Zn-processed AgIn5S8 (AIS) for the first time. The passivation treatment on the AIS QDs yields a 3.4-fold enhancement of fluorescence quantum efficiency and a 30% increase in the two-photon absorption cross section. ASE is achieved from the AIS/ZnS core/shell QD films under both one- and two-photon pumping with a threshold fluence of ∼84.5 μJ/cm2 and 3.1 mJ/cm2, respectively. These thresholds are comparable to the best optical gain performance of Cd based-QDs reported in the literature. Moreover, we demonstrate a facile whispering-gallery-mode microlaser of the core/shell QDs with a lasing threshold of ∼233 μJ/cm2. The passivated AIS QDs can be promising optical gain media for photonic applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c21648 |