Multiview Subspace Clustering via Low-Rank Symmetric Affinity Graph

Multiview subspace clustering (MVSC) has been used to explore the internal structure of multiview datasets by revealing unique information from different views. Most existing methods ignore the consistent information and angular information of different views. In this article, we propose a novel MVS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-08, Vol.35 (8), p.11382-11395
Hauptverfasser: Lan, Wei, Yang, Tianchuan, Chen, Qingfeng, Zhang, Shichao, Dong, Yi, Zhou, Huiyu, Pan, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiview subspace clustering (MVSC) has been used to explore the internal structure of multiview datasets by revealing unique information from different views. Most existing methods ignore the consistent information and angular information of different views. In this article, we propose a novel MVSC via low-rank symmetric affinity graph (LSGMC) to tackle these problems. Specifically, considering the consistent information, we pursue a consistent low-rank structure across views by decomposing the coefficient matrix into three factors. Then, the symmetry constraint is utilized to guarantee weight consistency for each pair of data samples. In addition, considering the angular information, we utilize the fusion mechanism to capture the inherent structure of data. Furthermore, to alleviate the effect brought by the noise and the high redundant data, the Schatten p-norm is employed to obtain a low-rank coefficient matrix. Finally, an adaptive information reduction strategy is designed to generate a high-quality similarity matrix for spectral clustering. Experimental results on 11 datasets demonstrate the superiority of LSGMC in clustering performance compared with ten state-of-the-art multiview clustering methods.
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2023.3260258