Mechanistic Insight into Solution-Based Atomic Layer Deposition of CuSCN Provided by In Situ and Ex Situ Methods

Solution-based atomic layer deposition (sALD) processes enable the preparation of thin films on nanostructured surfaces while controlling the film thickness down to a monolayer and preserving the homogeneity of the film. In sALD, a similar operation principle as in gas-phase ALD is used, however, wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-04, Vol.15 (15), p.19536-19544
Hauptverfasser: Hilpert, Felix, Liao, Pei-Chun, Franz, Evanie, Koch, Vanessa M., Fromm, Lukas, Topraksal, Ece, Görling, Andreas, Smith, Ana-Sunc̆ana, Barr, Maïssa K. S., Bachmann, Julien, Brummel, Olaf, Libuda, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solution-based atomic layer deposition (sALD) processes enable the preparation of thin films on nanostructured surfaces while controlling the film thickness down to a monolayer and preserving the homogeneity of the film. In sALD, a similar operation principle as in gas-phase ALD is used, however, with a broader range of accessible materials and without requiring expensive vacuum equipment. In this work, a sALD process was developed to prepare CuSCN on a Si substrate using the precursors CuOAc and LiSCN. The film growth was studied by ex situ atomic force microscopy (AFM), analyzed by a neural network (NN) approach, ellipsometry, and a newly developed in situ infrared (IR) spectroscopy experiment in combination with density functional theory (DFT). In the self-limiting sALD process, CuSCN grows on top of an initially formed two-dimensional (2D) layer as three-dimensional spherical nanoparticles with an average size of ∼25 nm and a narrow particle size distribution. With increasing cycle number, the particle density increases and larger particles form via Ostwald ripening and coalescence. The film grows preferentially in the β-CuSCN phase. Additionally, a small fraction of the α-CuSCN phase and defect sites form.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c16943