Mechanical Properties and Related Histological Alterations of Engineered Tendons In Vivo

The purpose of this research is to find out the interaction between histological alterations and mechanical properties of engineered tendon implanted in situ. Defects of 0.5cm-1.0cm were made at deep flexor tendons by surgical procedure. Engineered tendons using degradable scaffolds polyglytic acid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2005-01, Vol.288-289, p.11-14
Hauptverfasser: Qin, Ting Wu, Mo, Xiang Tao, Li, Xiu Qun, Zhang, Shujiang, Yang, Zhi Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this research is to find out the interaction between histological alterations and mechanical properties of engineered tendon implanted in situ. Defects of 0.5cm-1.0cm were made at deep flexor tendons by surgical procedure. Engineered tendons using degradable scaffolds polyglytic acid (PGA) mesh and tendon cells were implanted to repair the defects. Chickens were killed respectively at 2 weeks, 4 weeks, 6 weeks, and 8 weeks after surgery. The implants were taken out for histological examination, biomechanical test, and collagen synthesis assay. The results showed that after surgery the PGA scaffolds degraded fast and took precedence of collagen synthesis. There were not enough amount and maturation of the collagen fibers of the new tendon at 2-8 weeks after surgery. The biomechanical properties of new tendons were less than those of the normal tendon. Therefore, it is necessary to construct engineered tendons with better degradation rate of scaffolds and suitable biomechanical stimulation so that more collagen synthesis and better biomechanical properties of new tendons can be developed early after implantation.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.288-289.11