Chemoimmunological Cascade Cancer Therapy Using Fluorine Assembly Nanomedicine

Classical chemotherapeutic drugs may cause immunogenic cell death (ICD), followed by activating CD8+ T cells to promote cell-mediated antitumor immune responses. However, CD8+ T cells become exhausted due to tumor antigens’ continuous stimulation, creating a major obstacle to effectively suppressing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-04, Vol.17 (8), p.7498-7510
Hauptverfasser: Zhang, Qingyan, Wu, Pengkai, Wu, Jicheng, Shou, Hao, Ming, Xinliang, Wang, Shuqi, Wang, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classical chemotherapeutic drugs may cause immunogenic cell death (ICD), followed by activating CD8+ T cells to promote cell-mediated antitumor immune responses. However, CD8+ T cells become exhausted due to tumor antigens’ continuous stimulation, creating a major obstacle to effectively suppressing tumor growth and metastasis. Here, we develop an approach of chemo-gene combinational nanomedicine to bridge and reprogram chemotherapy and immunotherapy. The dually loaded nanomedicine induces ICD in tumor cells through doxorubicin and reverses the antitumor effects of exhausted CD8+ T cells through the small interfering RNA. The synergistic chemo-gene and fluorine assembly nanomedicine enriched in reactive oxygen species and acid-sensitive bonds results in enhanced cancer immunotherapy to inhibit tumor growth and the lung metastasis of breast cancer in a mouse model of breast cancer and melanoma. This study provides an efficient strategy and insights into chemoimmunological cascade therapy for combating malignant metastatic tumors.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c12600