Renal-Clearable Probe with Water Solubility and Photostability for Biomarker-Activatable Detection of Acute Kidney Injuries via NIR-II Fluorescence and Optoacoustic Imaging
Acute kidney injuries (AKI) have serious short-term or long-term complications with high morbidity and mortality rate, thus posing great health threats. Developing high-performance NIR-II probes for noninvasive in situ detection of AKI via NIR-II fluorescent and optoacoustic dual-mode imaging is of...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-04, Vol.15 (14), p.17664-17674 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acute kidney injuries (AKI) have serious short-term or long-term complications with high morbidity and mortality rate, thus posing great health threats. Developing high-performance NIR-II probes for noninvasive in situ detection of AKI via NIR-II fluorescent and optoacoustic dual-mode imaging is of great significance. Yet NIR-II chromophores often feature long conjugation and hydrophobicity, which prevent them from being renal clearable, thus limiting their applications in the detection and imaging of kidney diseases. To fully exploit the advantageous features of heptamethine cyanine dye, while overcoming its relatively poor photostability, and to strive to design a NIR-II probe for the detection and imaging of AKI with dual-mode imaging, herein, we have developed the probe PEG3-HC-PB, which is renal clearable, water soluble, and biomarker activatable and has good photostability. As for the probe, its fluorescence (900–1200 nm) is quenched due to the existence of the electron-pulling phenylboronic group (responsive element), and it exhibits weak absorption with a peak at 830 nm. Meanwhile, in the presence of the overexpressed H2O2 in the renal region in the case of AKI, the phenylboronic group is converted to the phenylhydroxy group, which enhances NIR-II fluorescent emission (900–1200 nm) and absorption (600–900 nm) and eventually produces conspicuous optoacoustic signals and NIR-II fluorescent emission for imaging. This probe enables detection of contrast-agent-induced and ischemia/reperfusion-induced AKI in mice using real-time 3D-MSOT and NIR-II fluorescent dual-mode imaging via response to the biomarker H2O2. Hence, this probe can be used as a practicable tool for detecting AKI; additionally, its design strategy could provide insight into the design of other large-conjugation NIR-II probes with multifarious biological applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c00956 |