Molecular Interaction of Functionalized Nanoplastics with Human Hemoglobin

Humans are exposed to excessive nanoplastics (NPs) which have ample affinity for globular proteins. We investigated the interaction of functionalized polystyrene nanoplastics (plain: PS, carboxy: PS-COOH, and amine: PS-NH 2 ) with human hemoglobin (Hb) utilizing multi-spectroscopic and docking appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluorescence 2023-11, Vol.33 (6), p.2257-2272
Hauptverfasser: Rajendran, Durgalakshmi, Chandrasekaran, Natarajan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humans are exposed to excessive nanoplastics (NPs) which have ample affinity for globular proteins. We investigated the interaction of functionalized polystyrene nanoplastics (plain: PS, carboxy: PS-COOH, and amine: PS-NH 2 ) with human hemoglobin (Hb) utilizing multi-spectroscopic and docking approaches to acquire insights into molecular aspects of binding mechanism, which will be helpful in assessing the toxicokinetics or toxicodynamics of nanoplastics NPs. Hypsochromicity and hypochromicity were observed invariably in all the spectra (steady-state fluorescence emission, synchronous and three-dimensional) for all complexes, among which PS-NH 2 binds effectively and changes the Hb’s conformation by enhancing hydrophobicity around aromatic residues, notably tryptophan. All the NPs bind with the hydrophobic pocket of B-chain in Hb, where PS and PS-NH 2 bind via hydrophobic force while PS-COOH binds via hydrogen bonding (predominantly) and van der Waals force, consistent validated with docking results. The minimal shift in absorbance peak also indicates enhanced hydrophobicity by PS-NH 2 with larger aggregation as demonstrated in resonance light scattering. The amide band’s shift, secondary structural analysis, and presence of characteristic functional group peaks in complexes in Infra-Red spectra confirm the structural changes in the protein. As seen in field emission scanning microscopy images, NPs penetrate the surface of proteins. These findings conclude that polystyrene NPs interact with Hb, causing structural alterations that may affect functional characteristics as well, with the greatest effect being in the order: PS-NH 2 >PS-COOH>PS. Graphical Abstract
ISSN:1053-0509
1573-4994
DOI:10.1007/s10895-023-03221-3