Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks
Two neural network algorithms trained by a physical vegetation model are used to retrieve soil moisture and vegetation variables of wheat canopies during the whole crop cycle. The first algorithm retrieves soil moisture using L band, two polarizations and multiangular radiometric data, for each sing...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2003-02, Vol.84 (2), p.174-183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two neural network algorithms trained by a physical vegetation model are used to retrieve soil moisture and vegetation variables of wheat canopies during the whole crop cycle. The first algorithm retrieves soil moisture using L band, two polarizations and multiangular radiometric data, for each single date of radiometric acquisition. The algorithm includes roughness and vegetation effects, but does not require a priori knowledge of roughness and vegetation parameters for the specific field. The second algorithm retrieves vegetation variables using dual band, V polarization and multiangular radiometric data. This algorithm operates over the whole multitemporal data set. Previously retrieved soil moisture values are also used as a priori information. The algorithms have been tested considering measurements carried out in 1993 and 1996 over wheat fields at the INRA Avignon test site. |
---|---|
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/S0034-4257(02)00105-0 |