Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks

Two neural network algorithms trained by a physical vegetation model are used to retrieve soil moisture and vegetation variables of wheat canopies during the whole crop cycle. The first algorithm retrieves soil moisture using L band, two polarizations and multiangular radiometric data, for each sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2003-02, Vol.84 (2), p.174-183
Hauptverfasser: Del Frate, F, Ferrazzoli, P, Schiavon, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two neural network algorithms trained by a physical vegetation model are used to retrieve soil moisture and vegetation variables of wheat canopies during the whole crop cycle. The first algorithm retrieves soil moisture using L band, two polarizations and multiangular radiometric data, for each single date of radiometric acquisition. The algorithm includes roughness and vegetation effects, but does not require a priori knowledge of roughness and vegetation parameters for the specific field. The second algorithm retrieves vegetation variables using dual band, V polarization and multiangular radiometric data. This algorithm operates over the whole multitemporal data set. Previously retrieved soil moisture values are also used as a priori information. The algorithms have been tested considering measurements carried out in 1993 and 1996 over wheat fields at the INRA Avignon test site.
ISSN:0034-4257
1879-0704
DOI:10.1016/S0034-4257(02)00105-0