Piezoelectric wafer active sensor embedded ultrasonics in beams and plates
In this paper we present the results of a systematic theoretical and experimental investigation of the fundamental aspects of using piezoelectric wafer active sensors (PWASs) to achieve embedded ultrasonics in thin-gage beam and plate structures. This investigation opens the path for systematic appl...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2003-12, Vol.43 (4), p.428-449 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present the results of a systematic theoretical and experimental investigation of the fundamental aspects of using piezoelectric wafer active sensors (PWASs) to achieve embedded ultrasonics in thin-gage beam and plate structures. This investigation opens the path for systematic application of PWASs for in situ health monitoring. After a comprehensive review of the literature, we present the principles of embedded PWASs and their interaction with the host structure. We give a brief review of the Lamb wave principles with emphasis on the understanding the particle motion wave speed/group velocity dispersion. Finite element modeling and experiments on thin-gage beam and plate specimens are presented and analyzed. The axial (S0) and flexural (A0) wave propagation patterns are simulated and experimentally measured. The group-velocity dispersion curves are validated. The use of the pulse-echo ultrasonic technique with embedded PWASs is illustrated using both finite element simulation and experiments. The importance of using high-frequency waves optimally tuned to the sensor-structure interaction is demonstrated. In conclusion, we discuss the extension of these results to in situ structural health monitoring using embedded ultrasonics. |
---|---|
ISSN: | 0014-4851 1741-2765 |
DOI: | 10.1007/BF02411348 |