Piezoelectric wafer active sensor embedded ultrasonics in beams and plates

In this paper we present the results of a systematic theoretical and experimental investigation of the fundamental aspects of using piezoelectric wafer active sensors (PWASs) to achieve embedded ultrasonics in thin-gage beam and plate structures. This investigation opens the path for systematic appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 2003-12, Vol.43 (4), p.428-449
Hauptverfasser: GIURGIUTIU, V, BAO, J, ZHAO, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present the results of a systematic theoretical and experimental investigation of the fundamental aspects of using piezoelectric wafer active sensors (PWASs) to achieve embedded ultrasonics in thin-gage beam and plate structures. This investigation opens the path for systematic application of PWASs for in situ health monitoring. After a comprehensive review of the literature, we present the principles of embedded PWASs and their interaction with the host structure. We give a brief review of the Lamb wave principles with emphasis on the understanding the particle motion wave speed/group velocity dispersion. Finite element modeling and experiments on thin-gage beam and plate specimens are presented and analyzed. The axial (S0) and flexural (A0) wave propagation patterns are simulated and experimentally measured. The group-velocity dispersion curves are validated. The use of the pulse-echo ultrasonic technique with embedded PWASs is illustrated using both finite element simulation and experiments. The importance of using high-frequency waves optimally tuned to the sensor-structure interaction is demonstrated. In conclusion, we discuss the extension of these results to in situ structural health monitoring using embedded ultrasonics.
ISSN:0014-4851
1741-2765
DOI:10.1007/BF02411348