Light-Controlled Magnetoelastic Effects in Ni/BaTiO3 Heterostructures
Magnetoelastic and magnetoelectric coupling in the artificial multiferroic heterostructures facilitate valuable features for device applications such as magnetic field sensors and electric-write magnetic-read memory devices. In ferromagnetic/ferroelectric heterostructures, the intertwined physical p...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-04, Vol.15 (14), p.18391-18401 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetoelastic and magnetoelectric coupling in the artificial multiferroic heterostructures facilitate valuable features for device applications such as magnetic field sensors and electric-write magnetic-read memory devices. In ferromagnetic/ferroelectric heterostructures, the intertwined physical properties can be manipulated by an external perturbation, such as an electric field, temperature, or a magnetic field. Here, we demonstrate the remote-controlled tunability of these effects under visible, coherent, and polarized light. The combined surface and bulk magnetic study of domain-correlated Ni/BaTiO3 heterostructures reveals that the system shows strong sensitivity to the light illumination via the combined effect of piezoelectricity, ferroelectric polarization, spin imbalance, magnetostriction, and magnetoelectric coupling. A well-defined ferroelastic domain structure is fully transferred from a ferroelectric substrate to the magnetostrictive layer via interface strain transfer. The visible light illumination is used to manipulate the original ferromagnetic microstructure by the light-induced domain wall motion in ferroelectric substrates and consequently the domain wall motion in the ferromagnetic layer. Our findings mimic the attractive remote-controlled ferroelectric random-access memory write and magnetic random-access memory read application scenarios, hence facilitating a perspective for room temperature spintronic device applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c21948 |