Labile carbon and soil texture control nitrogen transformation in deep vadose zone
Understanding transient nitrogen (N) storage and transformation in the deep vadose zone is critical for controlling groundwater contamination by nitrate. The occurrence of organic and inorganic forms of carbon (C) and nitrogen and their importance in the deep vadose zone is not well characterized du...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-06, Vol.878, p.163075-163075, Article 163075 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding transient nitrogen (N) storage and transformation in the deep vadose zone is critical for controlling groundwater contamination by nitrate. The occurrence of organic and inorganic forms of carbon (C) and nitrogen and their importance in the deep vadose zone is not well characterized due to difficulty in sampling and the limited number of studies. We sampled and characterized these pools beneath 27 croplands with different vadose zone thicknesses (6–45 m). We measured nitrate and ammonium in different depths for the 27 sites to evaluate inorganic N storage. We measured total Kjeldahl nitrogen (TKN), hot-water extractable organic carbon (EOC), soil organic carbon (SOC), and δ13C for two sites to understand the potential role of organic N and C pools in N transformations. Inorganic N stocks in the vadose zone were 21.7–1043.6 g m−2 across 27 sites; the thicker vadose zone significantly stored more inorganic N (p |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.163075 |