PTCR Effect in BaTiO3: Structural Aspects and Grain Boundary Potentials
Extensive microstructural and structure-property studies on donor doped barium titanate have revealed that the PTCR phenomenon is strongly controlled by the density, number of grain boundaries available to conduction, domain orientation and grain boundary domain coherence. Structural heterogeneities...
Gespeichert in:
Veröffentlicht in: | Journal of electroceramics 2003-05, Vol.10 (2), p.117-135 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extensive microstructural and structure-property studies on donor doped barium titanate have revealed that the PTCR phenomenon is strongly controlled by the density, number of grain boundaries available to conduction, domain orientation and grain boundary domain coherence. Structural heterogeneities lead to a wide range of grain boundary structures, potential barriers and, therefore, depletion widths. Conduction thus occurs primarily by percolation of electrons through favorably aligned domain pathways and low potential barrier grain boundaries. At the Curie point, the increase in the potential barriers along these pathways is likely to dominate the PTCR effect. To improve theoretical understanding a model needs to take heed of local values of parameters and also incorporate the fact that the bulk of the current flow is only through a certain percentage of grain boundaries. The specific structural factors that have led to an improved qualitative understanding of overall PTCR phenomenon are discussed. |
---|---|
ISSN: | 1385-3449 1573-8663 |
DOI: | 10.1023/A:1025647806757 |