O-GlcNAcylation regulates phagocytosis by promoting Ezrin localization at the cell cortex
O-GlcNAcylation is a post-translational modification that serves as a cellular nutrient sensor and participates in multiple physiological and pathological processes. However, it remains uncertain whether O-GlcNAcylation is involved in the regulation of phagocytosis. Here, we demonstrate a rapid incr...
Gespeichert in:
Veröffentlicht in: | Journal of genetics and genomics 2023-07, Vol.50 (7), p.486-496 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | O-GlcNAcylation is a post-translational modification that serves as a cellular nutrient sensor and participates in multiple physiological and pathological processes. However, it remains uncertain whether O-GlcNAcylation is involved in the regulation of phagocytosis. Here, we demonstrate a rapid increase in protein O-GlcNAcylation in response to phagocytotic stimuli. Knockout of the O-GlcNAc transferase or pharmacological inhibition of O-GlcNAcylation dramatically blocks phagocytosis, resulting in the disruption of retinal structure and function. Mechanistic studies reveal that the O-GlcNAc transferase interacts with Ezrin, a membrane-cytoskeleton linker protein, to catalyze its O-GlcNAcylation. Our data further show that Ezrin O-GlcNAcylation promotes its localization to the cell cortex, thereby stimulating the membrane-cytoskeleton interaction needed for efficient phagocytosis. These findings identify a previously unrecognized role for protein O-GlcNAcylation in phagocytosis with important implications in both health and diseases. |
---|---|
ISSN: | 1673-8527 |
DOI: | 10.1016/j.jgg.2023.02.003 |