Effect of birch tar embedded in polylactide on its biodegradation
The plasticized film was made of polylactide and birch tar, which was used in a concentration of 1, 5 and 10 % by weight. Tar was added to the polymer to obtain materials with antimicrobial properties. The main purpose of this work is to characterize and biodegradation of this film after the end of...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-06, Vol.239, p.124226-124226, Article 124226 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The plasticized film was made of polylactide and birch tar, which was used in a concentration of 1, 5 and 10 % by weight. Tar was added to the polymer to obtain materials with antimicrobial properties. The main purpose of this work is to characterize and biodegradation of this film after the end of its use. Therefore, the following analyzes were performed: enzymatic activity of microorganisms in the presence of polylactide (PLA) film containing birch tar (BT), biodegradation process in compost, barrier changes and structural properties of the film before and after biodegradation and bioaugmentation. Biological oxygen demand BOD21, water vapor permeability (Pv), oxygen permeability (Po), scanning electron microscopy (SEM) and enzymatic activity of microorganisms were assessed. Microorganism strains Bacillus toyonensis AK2 and Bacillus albus AK3 were isolated and identified, which constituted an effective consortium increasing the susceptibility of polylactide polymer material with tar to biodegradation in compost. Analyses with the use of the above-mentioned strains had an impact on the change of physicochemical properties, e.g. the presence of biofilm on the surface of the analyzed films and the reduction of the barrier properties of the film, which translates into the recorded susceptibility to biodegradation of these materials. The analyzed films can be used in the packaging industry, and after use, subjected to intentional biodegradation processes, including bioaugmentation.
•Strains accelerating biodegradation were isolated.•Biodegradable and biocidal films were obtained.•The films showed susceptibility to biodegradation in compost. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.124226 |