Scaled opposite-spin atomic-orbital based algebraic diagrammatic construction scheme for the polarization propagator with asymptotic linear-scaling effort: Theory and implementation
A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller–Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace tra...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-03, Vol.158 (12), p.124121-124121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124121 |
---|---|
container_issue | 12 |
container_start_page | 124121 |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Ambroise, M. A. Sacchetta, F. Graf, D. Ochsenfeld, C. Dreuw, A. |
description | A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller–Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace transform. The scaled opposite-spin second-order algebraic diagrammatic construction method with Cholesky decomposed densities and density-fitting, or CDD-DF-SOS-ADC(2) for short, exploits the sparsity of the two-electron repulsion integrals, the atomic ground-state density matrix, and the atomic transition density matrix to drastically reduce the computational effort. By using a local density-fitting approximation, it is shown that asymptotically linear scaling can be achieved for linear carboxylic acids. For electron-dense systems, sub-cubic scaling can be achieved if the excitation is local, and hence the transition density is sparse. Furthermore, the memory footprint and accuracy of the CDD-DF-SOS-ADC(2) method are explored in detail. |
doi_str_mv | 10.1063/5.0139894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2793987570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793987570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-68ba9a8fd72d11fa10e8351706dcaf500cb8f70a00cd2514edb61076a9dcad173</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoNY7Fq98A9IwBsVpp7M7CQz3knxCwq9sF4PZ5LMbkomiUlGWf-X_89sd1UQ2quccB4eXs5LyDMG5wx486Y9B9b0Xb9-QFYMur4SvIeHZAVQs6rnwE_J45RuAICJev2InDYCoBEtrMivLxKtVtSH4JPJukrBOIrZz0ZWPo4mo6UjpoKg3egxopFUGdxEnGfM5SO9SzkuMhvvaJJbPWs6-UjzVtPgLUbzE293IfqAm6KO9IfJW4ppN4fs9w5rnMZYpZLFuA3VUxHkt_R6q33cUXSKmjnYYnb51vWEnExok356fM_I1w_vry8-VZdXHz9fvLus5Jp1ueLdiD12kxK1YmxCBrprWiaAK4lTCyDHbhKAZVB1y9ZajZyB4NiXvWKiOSMvD96S_duiUx5mk6S2Fp32Sxpq0Ze7i1ZAQV_8h974JbqSbk_VXLRduxe-OlAy-pSinoYQzYxxNzAY9l0O7XDssrDPj8ZlnLX6S_4prwCvD0CS5nCXe213wt99_AcOQU3Nb2Xgupk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792675857</pqid></control><display><type>article</type><title>Scaled opposite-spin atomic-orbital based algebraic diagrammatic construction scheme for the polarization propagator with asymptotic linear-scaling effort: Theory and implementation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ambroise, M. A. ; Sacchetta, F. ; Graf, D. ; Ochsenfeld, C. ; Dreuw, A.</creator><creatorcontrib>Ambroise, M. A. ; Sacchetta, F. ; Graf, D. ; Ochsenfeld, C. ; Dreuw, A.</creatorcontrib><description>A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller–Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace transform. The scaled opposite-spin second-order algebraic diagrammatic construction method with Cholesky decomposed densities and density-fitting, or CDD-DF-SOS-ADC(2) for short, exploits the sparsity of the two-electron repulsion integrals, the atomic ground-state density matrix, and the atomic transition density matrix to drastically reduce the computational effort. By using a local density-fitting approximation, it is shown that asymptotically linear scaling can be achieved for linear carboxylic acids. For electron-dense systems, sub-cubic scaling can be achieved if the excitation is local, and hence the transition density is sparse. Furthermore, the memory footprint and accuracy of the CDD-DF-SOS-ADC(2) method are explored in detail.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0139894</identifier><identifier>PMID: 37003750</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algebra ; Asymptotic properties ; Carboxylic acids ; Density ; Quantum chemistry ; Scaling</subject><ispartof>The Journal of chemical physics, 2023-03, Vol.158 (12), p.124121-124121</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-68ba9a8fd72d11fa10e8351706dcaf500cb8f70a00cd2514edb61076a9dcad173</citedby><cites>FETCH-LOGICAL-c418t-68ba9a8fd72d11fa10e8351706dcaf500cb8f70a00cd2514edb61076a9dcad173</cites><orcidid>0000-0002-7640-4162 ; 0000-0002-5862-5113 ; 0000-0002-4189-6558 ; 0009-0005-6207-9775 ; 0000-0002-5465-3432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0139894$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37003750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambroise, M. A.</creatorcontrib><creatorcontrib>Sacchetta, F.</creatorcontrib><creatorcontrib>Graf, D.</creatorcontrib><creatorcontrib>Ochsenfeld, C.</creatorcontrib><creatorcontrib>Dreuw, A.</creatorcontrib><title>Scaled opposite-spin atomic-orbital based algebraic diagrammatic construction scheme for the polarization propagator with asymptotic linear-scaling effort: Theory and implementation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller–Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace transform. The scaled opposite-spin second-order algebraic diagrammatic construction method with Cholesky decomposed densities and density-fitting, or CDD-DF-SOS-ADC(2) for short, exploits the sparsity of the two-electron repulsion integrals, the atomic ground-state density matrix, and the atomic transition density matrix to drastically reduce the computational effort. By using a local density-fitting approximation, it is shown that asymptotically linear scaling can be achieved for linear carboxylic acids. For electron-dense systems, sub-cubic scaling can be achieved if the excitation is local, and hence the transition density is sparse. Furthermore, the memory footprint and accuracy of the CDD-DF-SOS-ADC(2) method are explored in detail.</description><subject>Algebra</subject><subject>Asymptotic properties</subject><subject>Carboxylic acids</subject><subject>Density</subject><subject>Quantum chemistry</subject><subject>Scaling</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEUhoNY7Fq98A9IwBsVpp7M7CQz3knxCwq9sF4PZ5LMbkomiUlGWf-X_89sd1UQ2quccB4eXs5LyDMG5wx486Y9B9b0Xb9-QFYMur4SvIeHZAVQs6rnwE_J45RuAICJev2InDYCoBEtrMivLxKtVtSH4JPJukrBOIrZz0ZWPo4mo6UjpoKg3egxopFUGdxEnGfM5SO9SzkuMhvvaJJbPWs6-UjzVtPgLUbzE293IfqAm6KO9IfJW4ppN4fs9w5rnMZYpZLFuA3VUxHkt_R6q33cUXSKmjnYYnb51vWEnExok356fM_I1w_vry8-VZdXHz9fvLus5Jp1ueLdiD12kxK1YmxCBrprWiaAK4lTCyDHbhKAZVB1y9ZajZyB4NiXvWKiOSMvD96S_duiUx5mk6S2Fp32Sxpq0Ze7i1ZAQV_8h974JbqSbk_VXLRduxe-OlAy-pSinoYQzYxxNzAY9l0O7XDssrDPj8ZlnLX6S_4prwCvD0CS5nCXe213wt99_AcOQU3Nb2Xgupk</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Ambroise, M. A.</creator><creator>Sacchetta, F.</creator><creator>Graf, D.</creator><creator>Ochsenfeld, C.</creator><creator>Dreuw, A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7640-4162</orcidid><orcidid>https://orcid.org/0000-0002-5862-5113</orcidid><orcidid>https://orcid.org/0000-0002-4189-6558</orcidid><orcidid>https://orcid.org/0009-0005-6207-9775</orcidid><orcidid>https://orcid.org/0000-0002-5465-3432</orcidid></search><sort><creationdate>20230328</creationdate><title>Scaled opposite-spin atomic-orbital based algebraic diagrammatic construction scheme for the polarization propagator with asymptotic linear-scaling effort: Theory and implementation</title><author>Ambroise, M. A. ; Sacchetta, F. ; Graf, D. ; Ochsenfeld, C. ; Dreuw, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-68ba9a8fd72d11fa10e8351706dcaf500cb8f70a00cd2514edb61076a9dcad173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Asymptotic properties</topic><topic>Carboxylic acids</topic><topic>Density</topic><topic>Quantum chemistry</topic><topic>Scaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambroise, M. A.</creatorcontrib><creatorcontrib>Sacchetta, F.</creatorcontrib><creatorcontrib>Graf, D.</creatorcontrib><creatorcontrib>Ochsenfeld, C.</creatorcontrib><creatorcontrib>Dreuw, A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambroise, M. A.</au><au>Sacchetta, F.</au><au>Graf, D.</au><au>Ochsenfeld, C.</au><au>Dreuw, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaled opposite-spin atomic-orbital based algebraic diagrammatic construction scheme for the polarization propagator with asymptotic linear-scaling effort: Theory and implementation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-03-28</date><risdate>2023</risdate><volume>158</volume><issue>12</issue><spage>124121</spage><epage>124121</epage><pages>124121-124121</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller–Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace transform. The scaled opposite-spin second-order algebraic diagrammatic construction method with Cholesky decomposed densities and density-fitting, or CDD-DF-SOS-ADC(2) for short, exploits the sparsity of the two-electron repulsion integrals, the atomic ground-state density matrix, and the atomic transition density matrix to drastically reduce the computational effort. By using a local density-fitting approximation, it is shown that asymptotically linear scaling can be achieved for linear carboxylic acids. For electron-dense systems, sub-cubic scaling can be achieved if the excitation is local, and hence the transition density is sparse. Furthermore, the memory footprint and accuracy of the CDD-DF-SOS-ADC(2) method are explored in detail.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37003750</pmid><doi>10.1063/5.0139894</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7640-4162</orcidid><orcidid>https://orcid.org/0000-0002-5862-5113</orcidid><orcidid>https://orcid.org/0000-0002-4189-6558</orcidid><orcidid>https://orcid.org/0009-0005-6207-9775</orcidid><orcidid>https://orcid.org/0000-0002-5465-3432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-03, Vol.158 (12), p.124121-124121 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2793987570 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algebra Asymptotic properties Carboxylic acids Density Quantum chemistry Scaling |
title | Scaled opposite-spin atomic-orbital based algebraic diagrammatic construction scheme for the polarization propagator with asymptotic linear-scaling effort: Theory and implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaled%20opposite-spin%20atomic-orbital%20based%20algebraic%20diagrammatic%20construction%20scheme%20for%20the%20polarization%20propagator%20with%20asymptotic%20linear-scaling%20effort:%20Theory%20and%20implementation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ambroise,%20M.%20A.&rft.date=2023-03-28&rft.volume=158&rft.issue=12&rft.spage=124121&rft.epage=124121&rft.pages=124121-124121&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0139894&rft_dat=%3Cproquest_pubme%3E2793987570%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792675857&rft_id=info:pmid/37003750&rfr_iscdi=true |