Scaled opposite-spin atomic-orbital based algebraic diagrammatic construction scheme for the polarization propagator with asymptotic linear-scaling effort: Theory and implementation

A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller–Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-03, Vol.158 (12), p.124121-124121
Hauptverfasser: Ambroise, M. A., Sacchetta, F., Graf, D., Ochsenfeld, C., Dreuw, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller–Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace transform. The scaled opposite-spin second-order algebraic diagrammatic construction method with Cholesky decomposed densities and density-fitting, or CDD-DF-SOS-ADC(2) for short, exploits the sparsity of the two-electron repulsion integrals, the atomic ground-state density matrix, and the atomic transition density matrix to drastically reduce the computational effort. By using a local density-fitting approximation, it is shown that asymptotically linear scaling can be achieved for linear carboxylic acids. For electron-dense systems, sub-cubic scaling can be achieved if the excitation is local, and hence the transition density is sparse. Furthermore, the memory footprint and accuracy of the CDD-DF-SOS-ADC(2) method are explored in detail.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0139894