Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors
K-RAS is a highly relevant oncogene that is mutated in approximately 90% of pancreatic cancers and 20–25% of lung adenocarcinomas. The aim of this work was to develop a new anti-KRAS siRNA therapeutic strategy through the engineering of functionalized lipid nanoparticles (LNPs). To do this, first, a...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2023-05, Vol.357, p.67-83 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | K-RAS is a highly relevant oncogene that is mutated in approximately 90% of pancreatic cancers and 20–25% of lung adenocarcinomas. The aim of this work was to develop a new anti-KRAS siRNA therapeutic strategy through the engineering of functionalized lipid nanoparticles (LNPs). To do this, first, a potent pan anti-KRAS siRNA sequence was chosen from the literature and different chemical modifications of siRNA were tested for their transfection efficacy (KRAS knockdown) and anti-proliferative effects on various cancer cell lines. Second, a selected siRNA candidate was loaded into tLyp-1 targeted and non-targeted lipid nanoparticles (LNPs). The biodistribution and antitumoral efficacy of selected siRNA-loaded LNP-prototypes were evaluated in vivo using a pancreatic cancer murine model (subcutaneous xenograft CFPAC-1 tumors). Our results show that tLyp-1-tagged targeted LNPs have an enhanced accumulation in the tumor compared to non-targeted LNPs. Moreover, a significant reduction in the pancreatic tumor growth was observed when the anti-KRAS siRNA treatment was combined with a classical chemotherapeutic agent, gemcitabine. In conclusion, our work demonstrates the benefits of using a targeting approach to improve tumor accumulation of siRNA-LNPs and its positive impact on tumor reduction.
[Display omitted]
•T-Lyp1-functionalized lipid nanoparticles (LNPs) were reported for the first time.•siRNA anti-KRAS-loaded lipid nanoparticles were developed and characterized.•T-Lyp1-functionalized lipid nanoparticles (LNPs) showed an enhanced accumulation in the tumor.•KRAS silencing and gemcitabine combination therapy shrank pancreatic tumor in mouse. |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2023.03.016 |