Ecofriendly Synthesis of Waste-Tire-Derived Graphite Nanoflakes by a Low-Temperature Electrochemical Graphitization Process toward a Silicon-Based Anode with a High-Performance Lithium-Ion Battery

Here, the successful transformation of graphitic carbon with a high degree of graphitization and a nanoflake structure from pyrolytic tire carbon black was demonstrated. First, amorphous carbon black with a porous structure was obtained after pyrolysis and simple preacid treatments. Subsequently, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-03, Vol.15 (12), p.15279-15289
Hauptverfasser: Wu, Shu-Chi, Lin, Ching-Wei, Chang, Pai-Chun, Yang, Tzu-Yi, Tang, Shin-Yi, Wu, Ding-Chou, Liao, Cheng-Ru, Wang, Yi-Chung, Lee, Ling, Yu, Yi-Jen, Chueh, Yu-Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, the successful transformation of graphitic carbon with a high degree of graphitization and a nanoflake structure from pyrolytic tire carbon black was demonstrated. First, amorphous carbon black with a porous structure was obtained after pyrolysis and simple preacid treatments. Subsequently, the carbon black was converted into a highly graphitic structure at a relatively low temperature (850 °C) through a facile electrochemical route using molten salt, which is ecofriendly and has high potential for large-scale graphitization compared to conventional incineration techniques. Moreover, we further improved the crystallinity and uniformity of the product simultaneously by directly mixing the metal oxide catalyst Fe2O3 with a carbon precursor. The mechanism of this metal-catalyzed electrochemical graphitization has been discussed in detail. To confirm their potential in practical applications, the as-prepared graphitized nanoflakes were used as conductive additives for silicon anodes in lithium-ion batteries, which showed a performance comparable to those utilizing commercial Super-P additives, exhibiting an initial Coulombic efficiency of approximately 79.7% and a high capacity retention of approximately 45.8% after 100 cycles with a reversible capacity of 1220 mAh g–1 at a current rate of 400 mA g–1. Hence, successfully recovered waste-tire-derived carbon black utilizing a low-temperature Fe2O3-catalyzed electrochemical process opens a pathway in low-temperature graphitization toward a sustainable value-added application in the field of energy storage.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c20393