High Oxidation Desulfurization of Fuels Catalyzed by Vanadium-Substituted Phosphomolybdate@Polyaniline@Chitosan as an Inorganic–Organic Hybrid Nanocatalyst

From the environmental protection and human health perspectives, the design and synthesis of efficient and reusable oxidative desulfurization nanocatalysts has always been sought after by scientists and industries. In this regard, a new heterogeneous nanocatalyst (V-SPM@PANI@CH) was synthesized by i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2023-04, Vol.62 (14), p.5468-5478
Hauptverfasser: Aghmasheh, Masomeh, Rezvani, Mohammad Ali, Jafarian, Vahab, Aghasadeghi, Zahra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:From the environmental protection and human health perspectives, the design and synthesis of efficient and reusable oxidative desulfurization nanocatalysts has always been sought after by scientists and industries. In this regard, a new heterogeneous nanocatalyst (V-SPM@PANI@CH) was synthesized by immobilizing Keggin-type vanadium-substituted phosphomolybdate ([PVMo11O39]4–) (named V-SPM) clusters on the surface of polyaniline (PANI) and chitosan (CH) polymers. The features of the assembled nanocatalyst were detected by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques in detail. The XRD studies indicated that the average crystallite size of V-SPM@PANI@CH was estimated to be about 36 nm. The catalytic performance of V-SPM@PANI@CH was investigated in the extractive and catalytic oxidation desulfurization (ECOD) procedure of real and thiophenic model gasoline by H2O2/AcOH (volume proportion of 2:1) as an oxidizing system. The optimal desulfurization conditions for ECOD reactions were as follows: 50 mL of model/real gasoline, 0.1 g of V-SPM@PANI@CH, reaction time of 60 min, and reaction temperature of 35 °C. Under the experimental conditions outlined above and the designed ECOD system, the content of sulfur in real gasoline could decline from 0.4985 to 0.0193 wt %, which corresponds to an efficiency of 96%. Moreover, the removal percentage of aromatic hydrocarbons, including thiophene (Th), benzothiophene (BT), and di-benzothiophene (DBT) as model fuels decreases in the order of DBT ≥ BT > Th under identical operating conditions. High catalytic activity was maintained with only a slight loss during five cycles. This work offers the ECOD system (V-SPM@PANI@CH/AcOH/H2O2) for the desulfurization of liquid fuels, which had a great repercussion on the ECOD efficiency.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.2c04415