Synthesis of bagasse nanocellulose-filled composite polyurethane xerogel for the efficient adsorption of Rhodamine-B dye from aqueous solution: investigation of adsorption parameters

In this study, polyurethane (PU)-based xerogels were synthesized by using the biobased polyol derived from chaulmoogra seed oil. These polyol was used for the preparation of PU xerogels using methylene diphenyl diisocyanate hard segment and polyethylene glycol (PEG6000) as soft segment with 1,4-diaz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2023-04, Vol.46 (4), p.23-23, Article 23
Hauptverfasser: Vijayan, Jyothy G., Niranjana Prabhu, T., Jineesh, A. G., Pal, Kaushik, Chakroborty, Subhendu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, polyurethane (PU)-based xerogels were synthesized by using the biobased polyol derived from chaulmoogra seed oil. These polyol was used for the preparation of PU xerogels using methylene diphenyl diisocyanate hard segment and polyethylene glycol (PEG6000) as soft segment with 1,4-diazabicyclo[2, 2, 2]octane as catalyst. Tetrahydrofuran, acetonitrile and dimethyl sulfoxide were used as the solvents. Nanocellulose (5 wt %) prepared from bagasse were added as filler, and the obtained composite xerogels were evaluated for chemical stability. The prepared samples were also characterized by using SEM and FTIR. Waste sugarcane bagasse nanocellulose proved as a cheap reinforcer in the xerogel synthesis and for the adsorption of Rhodamine-B dye from the aqueous solution. The factors that affect the adsorption process have been studied including the quantity of the adsorbent (0.02–0.06 g), pH (6–12), temperature (30–50) and time (30–90). Central composite design for four variables and three levels with response surface methodology has been used to get second-order polynomial equation for the percentage dye removal. RSM was confirmed by the measurement of analysis of variance. Increase in the pH and quantity of the adsorbent was found to increase the sorption capacities of the xerogel (NC-PUXe) towards rhodamine B, maximum adsorption. Graphical abstract
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/s10189-023-00278-7