Concurrent reductive decontamination of chromium (VI) and uranium (VI) in groundwater by Fe(0)-based autotrophic bioprocess

The co-presence of chromium (VI) [Cr(VI)] and uranium (VI) [U(VI)] is widely found in groundwater, imposing severe risks on human health. Although zerovalent iron [Fe(0)] supports superb performance for bioreduction of Cr(VI) and U(VI) individually, the biogeochemical process involving their concurr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2023-06, Vol.452, p.131222-131222, Article 131222
Hauptverfasser: Lu, Jianping, Geng, Rongyue, Zhang, Han, Yu, Zhen, Chen, Tao, Zhang, Baogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The co-presence of chromium (VI) [Cr(VI)] and uranium (VI) [U(VI)] is widely found in groundwater, imposing severe risks on human health. Although zerovalent iron [Fe(0)] supports superb performance for bioreduction of Cr(VI) and U(VI) individually, the biogeochemical process involving their concurrent removal with Fe(0) as electron donor remains unexplored. In the 6-d batch study, 86.1% ± 0.7% of Cr(VI) was preferentially eliminated, while 78.4% ± 0.5% of U(VI) removal was achieved simultaneously. Efficient removal of Cr(VI) (100%) and U(VI) (51.2% ∼ 100%) was also obtained in a continuous 160-d column experiment. As a result, Cr(VI) and U(VI) were reduced to less mobile Cr(III) and insoluble U(IV), respectively. 16 S rRNA sequencing was performed to investigate the dynamics of microbial community. Delftia, Acinetobacter, Pseudomonas and Desulfomicrobium were the major contributors mediating the bioreduction process. The initial Cr(VI) and hydraulic retention time (HRT) incurred pronounced effects on community diversity, which in turn altered the reactor’s performance. The enrichment of Cr(VI) resistance (chrA), U(VI) reduction (dsrA) and Fe(II) oxidation (mtrA) genes were observed by reverse transcription qPCR. Cytochrome c, glutathione and NADH as well as VFAs and gas metabolites also involved in the bioprocess. This study demonstrated a promising approach for removing the combined contaminants of Cr(VI) and U(VI) in groundwater. [Display omitted] •Oxidation of Fe(0) could donate electrons for bioreduction of Cr(VI) and U(VI).•Cr(VI) and U(VI) were reduced to sparely soluble Cr(III) and U(IV).•Functional genera co-occurred to facilitate the bioprocess synergistically.•Functional genes, electron transporters and metabolites were determined.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2023.131222