Intercropped Amygdalus persica and Pteris vittata applied with additives presents a safe utilization and remediation mode for arsenic-contaminated orchard soil

Intercropping the arsenic (As) hyperaccumulator Pteris vittata with fruit trees can safely yield peaches in As-polluted orchards in South China. However, the soil As remediation effects and the related mechanisms of P. vittata intercropped with peach trees with additives in the north temperate zone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-06, Vol.879, p.163034-163034, Article 163034
Hauptverfasser: Li, Yufeng, Yang, Junxing, Guo, Junmei, Zheng, Guodi, Chen, Tongbin, Meng, Xiaofei, He, Mengke, Ma, Chuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intercropping the arsenic (As) hyperaccumulator Pteris vittata with fruit trees can safely yield peaches in As-polluted orchards in South China. However, the soil As remediation effects and the related mechanisms of P. vittata intercropped with peach trees with additives in the north temperate zone have rarely been reported. A field experiment was conducted to systematically study the intercropping of peach (Amygdalus persica) with P. vittata with three additives [calcium magnesium phosphate (CMP), ammonium dihydrogen phosphate (ADP), and Stevia rebaudiana Bertoni residue (SR)] in a typical As-contaminated peach orchard surrounding a historical gold mine in Pinggu County, Beijing City. The results showed that compared with monoculture (PM) and intercropping without addition (LP), the remediation efficiency of P. vittata intercropping was significantly increased by 100.9 % (CMP) to 293.5 % (ADP). CMP and ADP mainly compete with available As (A-As) adsorbed to the surface of Fe-Al oxide through PO43−, while SR might activate A-As by enhancing dissolved organic carbon (DOC) in P. vittata rhizospheres. The photosynthetic rates (Gs) of intercropped P. vittata were significantly positively correlated with pinna As. The intercropping mode applied with the three additives did not obviously affect fruit quality, and the net profit of the intercropping mode (ADP) reached 415,800 yuan·ha−1·a−1. The As content in peaches was lower than the national standard in the intercropping systems. Comprehensive analysis showed that A. persica intercropped with P. vittata applied with ADP is better than other treatments in improving risk reduction and agricultural sustainability. In this study, a theoretical and practical basis is provided for the safe utilization and remediation of As-contaminated orchard soil in the north temperate zone. [Display omitted] •Additives increased the remediation efficiency of Pteris vittata intercrop.•Phosphorous additives activated available-As by competing with As through PO43−.•Stevia residue activated available-As by enhancing dissolved organic carbon.•Photosynthesis of Pteris vittata intercrop was positively correlated with pinna As.•Additive treatments did not increase peaches As, but reduce environmental risk.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.163034