Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions

The Fourier-sine-with-mapping pseudospectral algorithm of Fattal et al. [Phys. Rev. E 53 (1996) 1217] has been applied in several quantum physics problems. Here, we compare it with pseudospectral methods using Laguerre functions and rational Chebyshev functions. We show that Laguerre and Chebyshev e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2003-06, Vol.188 (1), p.56-74
Hauptverfasser: Boyd, John P., Rangan, C., Bucksbaum, P.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Fourier-sine-with-mapping pseudospectral algorithm of Fattal et al. [Phys. Rev. E 53 (1996) 1217] has been applied in several quantum physics problems. Here, we compare it with pseudospectral methods using Laguerre functions and rational Chebyshev functions. We show that Laguerre and Chebyshev expansions are better suited for solving problems in the interval r∈[0,∞] (for example, the Coulomb–Schrödinger equation), than the Fourier-sine-mapping scheme. All three methods give similar accuracy for the hydrogen atom when the scaling parameter L is optimum, but the Laguerre and Chebyshev methods are less sensitive to variations in L. We introduce a new variant of rational Chebyshev functions which has a more uniform spacing of grid points for large r, and gives somewhat better results than the rational Chebyshev functions of Boyd [J. Comp. Phys. 70 (1987) 63].
ISSN:0021-9991
1090-2716
DOI:10.1016/S0021-9991(03)00127-X