Epoxy-silica polymers as restoration materials. Part II
Room temperature reaction of the epoxy resin poly(bisphenolA-co-epichlorohydrin), glycidyl end-capped with the coupling agent (3-aminopropyl)triethoxysilane, in 1:2 (1), 1:1 (2) and 2:1 (3) molar ratios, leads, after curing for three months at room temperature, to glassy, transparent, crack-free sol...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2003-07, Vol.44 (16), p.4435-4441 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Room temperature reaction of the epoxy resin poly(bisphenolA-co-epichlorohydrin), glycidyl end-capped with the coupling agent (3-aminopropyl)triethoxysilane, in 1:2 (1), 1:1 (2) and 2:1 (3) molar ratios, leads, after curing for three months at room temperature, to glassy, transparent, crack-free solids which were investigated by SEM, TGA, DSC, NIR and Raman spectroscopy. SEM investigations show substantially a great homogeneity over the entire area with absence of cracks, veins and/or fissures and without formations of clusters and/or aggregates. The conversion of oxirane rings, as found by Raman spectroscopy, decreases by increasing the epoxy/amine ratio, with conversion percentages ranging from 95.3 to 81.3%. As a common feature, the presence in 1, 2 and 3 of Si–O–Si linkages increases the polymer degradation temperature and thermal oxidative stability relative to the parent epoxy resin by shifting the weight loss to higher temperatures. Differently from mixtures 2 and 3, which show the Tg at 90 °C, the mixture 1 does not exhibit any detectable glass transition. |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/S0032-3861(03)00432-4 |