Electrokinetic-Enhanced Bioremediation of Trichloroethylene-Contaminated Low-Permeability Soils: Mechanistic Insight from Spatio-Temporal Variations of Indigenous Microbial Community and Biodehalogenation Activity
Electrokinetic-enhanced bioremediation (EK-Bio), particularly bioaugmentation with injection of biodehalogenation functional microbes such as Dehalococcoides, has been documented to be effective in treating a low-permeability subsurface matrix contaminated with chlorinated ethenes. However, the spat...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2023-03, Vol.57 (12), p.5046-5055 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrokinetic-enhanced bioremediation (EK-Bio), particularly bioaugmentation with injection of biodehalogenation functional microbes such as Dehalococcoides, has been documented to be effective in treating a low-permeability subsurface matrix contaminated with chlorinated ethenes. However, the spatio-temporal variations of indigenous microbial community and biodehalogenation activity of the background matrix, a fundamental aspect for understanding EK-Bio, remain unclear. To fill this gap, we investigated the variation of trichloroethylene (TCE) biodehalogenation activity in response to indigenous microbial community succession in EK-Bio by both column and batch experiments. For a 195 day EK-Bio column (∼1 V/cm, electrolyte circulation, lactate addition), biodehalogenation activity occurred first near the cathode (90 days), which was controlled by electron acceptor (i.e., Fe(III)) competition and microbe succession. Amplicon sequencing and metagenome analysis revealed that iron-reducing bacteria (Geobacter, Anaeromyxobacter, Geothrix) were enriched within initial 60 d and were gradually replaced by organohalide-respiring bacteria (versatile Geobacter and obligate Dehalobacter) afterward. Iron-reducing bacteria required an initial long time to consume the competitive electron acceptors so that an appropriate reductive condition could be developed for the enrichment of organohalide-respiring bacteria and the enhancement of TCE biodehalogenation activity. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.3c00278 |