Sensitive Electrochemical Sensor for Glycoprotein Detection Using a Self-Serviced-Track 3D DNA Walker and Catalytic Hairpin Assembly Enzyme-Free Signal Amplification

Approaches for the detection of targets in the cellular microenvironment have been extensively developed. However, developing a method with sensitive and accurate analysis for noninvasive cancer diagnosis has remained challenging until now. Here, we reported a sensitive and universal electrochemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-04, Vol.95 (14), p.6122-6129
Hauptverfasser: Xu, Wenwen, Sun, Xinyu, Ling, Pinghua, Wang, Linyu, Gao, Xianping, Yang, Pei, Tang, Chuanye, Gao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Approaches for the detection of targets in the cellular microenvironment have been extensively developed. However, developing a method with sensitive and accurate analysis for noninvasive cancer diagnosis has remained challenging until now. Here, we reported a sensitive and universal electrochemical platform that integrates a self-serviced-track 3D DNA walker and catalytic hairpin assembly (CHA) triggering G-Quadruplex/Hemin DNAzyme assembly signal amplification. In the presence of a target, the aptamer recognition initiated the 3D DNA walker on the cell surface autonomous running and releasing DNA (C) from the triple helix. The released DNA C as the target-triggered CHA moiety, and then G-quadruplex/hemin, was formed on the surface of electrode. Eventually, a large amount of G-quadruplex/hemin was formed on the sensor surface to generate an amplified electrochemical signal. Using N-acetylgalactosamine as a model, benefiting from the high selectivity and sensitivity of the self-serviced-track 3D DNA walker and the CHA, this designed method showed a detection limit of 39 cell/mL and 2.16 nM N-acetylgalactosamine. Furthermore, this detection strategy was enzyme free and exhibited highly sensitive, accurate, and universal detection of a variety of targets by using the corresponding DNA aptamer in clinical sample analysis, showing potential for early and prognostic diagnostic application.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c00422