In Situ Surface Restructuring of Amorphous Ni-Doped CoMo Phosphate-Based Three-Dimensional Networked Nanosheets: Highly Efficient and Durable Electrocatalyst for Overall Alkaline Water Splitting
Developing cost-efficient bifunctional electrocatalysts with high efficiency and durability for the production of green hydrogen and oxygen is a demanding and challenging research area. Due to their high earth abundance, transition metal-based electrocatalysts are alternatives to noble metal-based w...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-04, Vol.15 (13), p.16571-16583 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing cost-efficient bifunctional electrocatalysts with high efficiency and durability for the production of green hydrogen and oxygen is a demanding and challenging research area. Due to their high earth abundance, transition metal-based electrocatalysts are alternatives to noble metal-based water splitting electrocatalysts. Herein, binder-free three-dimensional (3D) networked nanosheets of Ni-doped CoMo ternary phosphate (Pi) were prepared using a facile electrochemical synthetic strategy on flexible carbon cloth without any high-temperature heat treatment or complicated electrode fabrication. The optimized CoMoNiPi electrocatalyst delivers admirable hydrogen (η10 = 96 mV) and oxygen (η10 = 272 mV) evolution performances in 1.0 M KOH electrolyte. For overall water splitting in a two-electrode system, the present catalyst demands only 1.59 and 1.90 V to reach current densities of 10 and 100 mA/cm2, respectively, which is lower than that of the Pt/C||RuO2 couple (1.61 V @ 10 mA/cm2, 2 V > @ 100 mA/cm2) and many other catalysts reported previously. Furthermore, the present catalyst delivers excellent long-term stability in a two-electrode system continuously over 100 h at a high current density of 100 mA/cm2, exhibiting nearly 100% faradic efficiency. The unique 3D amorphous structure with high porosity, a high active surface area, and lower charge transfer resistance provides excellent overall water splitting. Notably, the amorphous structure of the present catalyst favors the in situ surface reconstruction during electrolysis and generates very stable surface-active sites capable of long-term performance. The present work provides a route for the preparation of multimetallic-Pi nanostructures for various electrode applications that are easy to prepare and have superior activity, high stability, and low cost. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c18820 |