Surface Ligands Dictate the Mechanical Properties of Inorganic Nanomaterials

The ability for organic surface chemistry to influence the properties of inorganic nanomaterials is appreciated in some instances but is poorly understood in terms of mechanical behavior. Here we demonstrate that the global mechanical strength of a silver nanoplate can be modulated according to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-04, Vol.17 (7), p.6698-6707
Hauptverfasser: Rehn, Sarah M., Gerrard-Anderson, Theodor M., Chen, Yu, Wang, Peng, Robertson, Timothy, Senftle, Thomas P., Jones, Matthew R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability for organic surface chemistry to influence the properties of inorganic nanomaterials is appreciated in some instances but is poorly understood in terms of mechanical behavior. Here we demonstrate that the global mechanical strength of a silver nanoplate can be modulated according to the local binding enthalpy of its surface ligands. A continuum-based core–shell model for nanoplate deformation shows that the interior of a particle retains bulk-like properties while the surface shell has yield strength values that depend on surface chemistry. Electron diffraction experiments reveal that, relative to the core, atoms at the nanoplate surface undergo lattice expansion and disordering directly related to the coordinating strength of the surface ligand. As a result, plastic deformation of the shell is more difficult, leading to an enhancement of the global mechanical strength of the plate. These results demonstrate a size-dependent coupling between chemistry and mechanics at the nanoscale.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c12497