COM: Contrastive Masked-attention model for incomplete multimodal learning

Most multimodal learning methods assume that all modalities are always available in data. However, in real-world applications, the assumption is often violated due to privacy protection, sensor failure etc. Previous works for incomplete multimodal learning often suffer from one of the following draw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2023-05, Vol.162, p.443-455
Hauptverfasser: Qian, Shuwei, Wang, Chongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most multimodal learning methods assume that all modalities are always available in data. However, in real-world applications, the assumption is often violated due to privacy protection, sensor failure etc. Previous works for incomplete multimodal learning often suffer from one of the following drawbacks: introducing noise, lacking flexibility to missing patterns and failing to capture interactions between modalities. To overcome these challenges, we propose a COntrastive Masked-attention model (COM). The framework performs cross-modal contrastive learning with GAN-based augmentation to reduce modality gap, and employs a masked-attention model to capture interactions between modalities. The augmentation adapts cross-modal contrastive learning to suit incomplete case by a two-player game, improving the effectiveness of multimodal representations. Interactions between modalities are modeled by stacking self-attention blocks, and attention masks limit them on the observed modalities to avoid extra noise. All kinds of modality combinations share a unified architecture, so the model is flexible to different missing patterns. Extensive experiments on six datasets demonstrate the effectiveness and robustness of the proposed method for incomplete multimodal learning.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2023.03.003