Iron-silicate-coated porous silicon nanoparticles for in situ ROS self-generation
Porous silicon nanoparticles (pSiNPs) have gained attention from drug delivery systems (DDS) due to their biocompatibility, high drug-loading efficiency, and facile surface modification. To date, many surface chemistries of pSiNPs have been developed to maximize the merits and overcome the drawbacks...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2023-05, Vol.225, p.113273-113273, Article 113273 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous silicon nanoparticles (pSiNPs) have gained attention from drug delivery systems (DDS) due to their biocompatibility, high drug-loading efficiency, and facile surface modification. To date, many surface chemistries of pSiNPs have been developed to maximize the merits and overcome the drawbacks of pSiNPs. In this work, we newly disclosed a formulation, iron-silicate-coated pSiNPs (Fe-pSiNPs-NCS), using the surface modification method with iron-silicate and 3-isothiocyanatopropyltriethoxysilane (TEPITC). Fe-pSiNPs-NCS demonstrated effective reactive-oxygen species (ROS) self-generation ability via a Fenton-like reaction of iron-silicate and in situ hydrogen peroxide (H2O2) generation of TEPITC on the surface of pSiNPs, resulting in excellent anticancer effect in U87MG cancer cells. Moreover, we confirmed that Fe-pSiNPs-NCS could be used as a drug delivery carrier as it was proven that anticancer drugs (doxorubicin, SN-38) were loaded into Fe-pSiNPs-NCS with high-loading efficiency. These findings could offer efficient strategies for developing nanotherapeutics in biomedical fields.
[Display omitted]
•A new iron-silicate coating chemistry of porous silicon nanoparticles was disclosed.•In situ ROS generation via a Fenton reaction and GSH depletion was demonstrated.•The nano-formulation showed an excellent anticancer effect in U87MG cells.•The nano-formulation exhibited high hydrophilic/hydrophobic-drug loading efficiency. |
---|---|
ISSN: | 0927-7765 1873-4367 |
DOI: | 10.1016/j.colsurfb.2023.113273 |