“One Stone Two Birds” Strategy of Synthesizing the Battery Material Lithium Sulfide: Aluminothermal Reduction of Lithium Sulfate

Lithium sulfide (Li2S) is a critical material for clean energy technologies, i.e., the cathode material in lithium–sulfur batteries and the raw material for making sulfide solid electrolytes in all-solid-state batteries. However, its practical application at a large scale is hindered by its industri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2023-04, Vol.62 (14), p.5576-5585
Hauptverfasser: Yang, Haoyu, Sun, Yujiang, Yang, Shunjin, Han, Aiguo, Hu, Xiaohu, Zhang, Haihua, Yao, Xiang, Zhang, Xin, Yang, Yongan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium sulfide (Li2S) is a critical material for clean energy technologies, i.e., the cathode material in lithium–sulfur batteries and the raw material for making sulfide solid electrolytes in all-solid-state batteries. However, its practical application at a large scale is hindered by its industrial production method of reducing lithium sulfate with carbon materials at high temperatures, which emits carbon dioxide and is time-consuming. We hereby report a method of synthesizing Li2S by thermally reducing lithium sulfate with aluminum. Compared with the carbothermal method, this aluminothermal approach has several advantages, such as operation at lower temperatures, completion in minutes, no emission of greenhouse gases, and valuable byproducts of aluminum oxide (Al2O3). The home-made Li2S demonstrates competitive performance in battery tests versus the commercial counterpart. Moreover, using the byproduct Al2O3 to coat the cathode side of the separator can enhance the battery’s capacity without influencing its rate capability. Thus, this “one stone two birds” method has great potential for practical applications of developing Li–S batteries.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.3c00087