Biomass-Printed Hybrid Solar Evaporator Derived from Bio-polluted Invasive Species, a Potential Step toward Carbon Neutrality

Biomass-based photothermal conversion is of great importance for solar energy utilization toward carbon neutrality. Herein, a hybrid solar evaporator is innovatively designed via UV-induced printing of pyrolyzed Kudzu biochar on hydrophilic cotton fabric (KB@CF) to integrate all parameters in a sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-04, Vol.15 (13), p.16607-16620
Hauptverfasser: Irshad, Muhammad Sultan, Arshad, Naila, Liu, Gang, Mushtaq, Naveed, Lashari, Arshad Ali, Qin, Wancheng, Asghar, Muhammad Sohail, Li, Hongrong, Wang, Xianbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomass-based photothermal conversion is of great importance for solar energy utilization toward carbon neutrality. Herein, a hybrid solar evaporator is innovatively designed via UV-induced printing of pyrolyzed Kudzu biochar on hydrophilic cotton fabric (KB@CF) to integrate all parameters in a single evaporator, such as solar evaporation, salt collection, waste heat recovery for thermoelectricity, sieving oil emulsions, and water disinfection from microorganisms. The UV-induced printed fabric demonstrates stronger material adhesion as compared to the conventional dip-dry technique. The hybrid solar evaporator gives an enhanced evaporation rate (2.32 kg/m2 h), and the complementary waste heat recovery system generates maximum open-circuit voltage (V out ∼ 143.9 mV) and solar to vapor conversion efficiency (92%), excluding heat losses under one sun illumination. More importantly, 99.98% of photothermal-induced bacterial killing efficiency was achieved within 20 min under 1 kW m–2 using the hyperthermia effect of Kudzu biochar. Furthermore, numerical heat-transfer simulations were performed successfully to analyze the enhanced interfacial heat accumulation (75.3 °C) and heat flux distribution of the thermoelectric generators under one sun. We firmly believe that the safe use of bio-polluted invasive species in hybrid solar-driven evaporation systems eases the environmental pressure toward carbon neutrality.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c20207