An equational notion of lifting monad

We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2003-02, Vol.294 (1), p.31-60
Hauptverfasser: Bucalo, Anna, Führmann, Carsten, Simpson, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of the former fully embeds in the partial category of the latter. Thus, equational lifting monads precisely capture the equational properties of partial maps as induced by partial map classifiers. The representation theorem also provides a tool for transferring non-equational properties of partial map classifiers to equational lifting monads. It is proved using a direct axiomatization of Kleisli categories of equational lifting monads. This axiomatization is of interest in its own right.
ISSN:0304-3975
1879-2294
DOI:10.1016/S0304-3975(01)00243-2