Fatigue crack growth in SiC particulates reinforced Al matrix graded composite
The SiC/Al graded composite was fabricated by powder metallurgy processing and its fatigue crack growth behavior was studied. The volume percentage of SiC particulates was distributed from 5 to 30% layer by layer on the cross section. Since the aluminium was dissolved together, there was no evident...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2003-11, Vol.360 (1-2), p.191-196 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The SiC/Al graded composite was fabricated by powder metallurgy processing and its fatigue crack growth behavior was studied. The volume percentage of SiC particulates was distributed from 5 to 30% layer by layer on the cross section. Since the aluminium was dissolved together, there was no evident interface between the two layers with different volume fraction of SiC particulates. Fatigue crack growth was in direction of from 5 to 30% SiC layers under sinusoidal wave-form. The retardation of fatigue crack growth was found when crack propagated from low volume fraction of SiC to high volume fraction of SiC. The crack deflection and branching between two layers were observed, which decreased crack growth rates. In view of crack tip driving force, the plasticity mismatch between the layers shielded crack tip driving force, i.e. decreased the effective J-integral at the tip of the crack as the plastic zone of the crack tip spread from the weaker material into the stronger material. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/S0921-5093(03)00397-6 |