A genetic algorithm for cluster analysis
This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the he...
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2003, Vol.7 (1), p.15-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Intelligent data analysis |
container_volume | 7 |
creator | Hruschka, Eduardo R. Ebecken, Nelson F.F. |
description | This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method. |
doi_str_mv | 10.3233/IDA-2003-7103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27893561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27893561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-3763495ada61eeef4789a5de2753c0007add4bb426d1072683b2541e8282f29d3</originalsourceid><addsrcrecordid>eNotkDtPwzAYRS0EEqUwsmdCLAa_7YxReVWqxAISm-XYX0qQkxQ7GfrvSVSme4erc6WD0C0lD5xx_rh9qjAjhGNNCT9DKyo1xYIycz53YgwWSn9doqucfwghghGxQvdVsYcextYXLu6H1I7fXdEMqfBxyiOkwvUuHnObr9FF42KGm_9co8-X54_NG969v2431Q57auiIuVZclNIFpygANEKb0skATEvu51ftQhB1LZgKlGimDK-ZFBQMM6xhZeBrdHfiHtLwO0EebddmDzG6HoYpWzYDuVR0HuLT0Kch5wSNPaS2c-loKbGLDzv7sIsPu_jgfxoiUPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27893561</pqid></control><display><type>article</type><title>A genetic algorithm for cluster analysis</title><source>Business Source Complete</source><creator>Hruschka, Eduardo R. ; Ebecken, Nelson F.F.</creator><creatorcontrib>Hruschka, Eduardo R. ; Ebecken, Nelson F.F.</creatorcontrib><description>This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-2003-7103</identifier><language>eng</language><ispartof>Intelligent data analysis, 2003, Vol.7 (1), p.15-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c181t-3763495ada61eeef4789a5de2753c0007add4bb426d1072683b2541e8282f29d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Ebecken, Nelson F.F.</creatorcontrib><title>A genetic algorithm for cluster analysis</title><title>Intelligent data analysis</title><description>This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method.</description><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAYRS0EEqUwsmdCLAa_7YxReVWqxAISm-XYX0qQkxQ7GfrvSVSme4erc6WD0C0lD5xx_rh9qjAjhGNNCT9DKyo1xYIycz53YgwWSn9doqucfwghghGxQvdVsYcextYXLu6H1I7fXdEMqfBxyiOkwvUuHnObr9FF42KGm_9co8-X54_NG969v2431Q57auiIuVZclNIFpygANEKb0skATEvu51ftQhB1LZgKlGimDK-ZFBQMM6xhZeBrdHfiHtLwO0EebddmDzG6HoYpWzYDuVR0HuLT0Kch5wSNPaS2c-loKbGLDzv7sIsPu_jgfxoiUPk</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Hruschka, Eduardo R.</creator><creator>Ebecken, Nelson F.F.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2003</creationdate><title>A genetic algorithm for cluster analysis</title><author>Hruschka, Eduardo R. ; Ebecken, Nelson F.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-3763495ada61eeef4789a5de2753c0007add4bb426d1072683b2541e8282f29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Ebecken, Nelson F.F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hruschka, Eduardo R.</au><au>Ebecken, Nelson F.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genetic algorithm for cluster analysis</atitle><jtitle>Intelligent data analysis</jtitle><date>2003</date><risdate>2003</risdate><volume>7</volume><issue>1</issue><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method.</abstract><doi>10.3233/IDA-2003-7103</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-467X |
ispartof | Intelligent data analysis, 2003, Vol.7 (1), p.15-25 |
issn | 1088-467X 1571-4128 |
language | eng |
recordid | cdi_proquest_miscellaneous_27893561 |
source | Business Source Complete |
title | A genetic algorithm for cluster analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genetic%20algorithm%20for%20cluster%20analysis&rft.jtitle=Intelligent%20data%20analysis&rft.au=Hruschka,%20Eduardo%20R.&rft.date=2003&rft.volume=7&rft.issue=1&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-2003-7103&rft_dat=%3Cproquest_cross%3E27893561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27893561&rft_id=info:pmid/&rfr_iscdi=true |