A genetic algorithm for cluster analysis

This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2003, Vol.7 (1), p.15-25
Hauptverfasser: Hruschka, Eduardo R., Ebecken, Nelson F.F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 15
container_title Intelligent data analysis
container_volume 7
creator Hruschka, Eduardo R.
Ebecken, Nelson F.F.
description This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method.
doi_str_mv 10.3233/IDA-2003-7103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27893561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27893561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-3763495ada61eeef4789a5de2753c0007add4bb426d1072683b2541e8282f29d3</originalsourceid><addsrcrecordid>eNotkDtPwzAYRS0EEqUwsmdCLAa_7YxReVWqxAISm-XYX0qQkxQ7GfrvSVSme4erc6WD0C0lD5xx_rh9qjAjhGNNCT9DKyo1xYIycz53YgwWSn9doqucfwghghGxQvdVsYcextYXLu6H1I7fXdEMqfBxyiOkwvUuHnObr9FF42KGm_9co8-X54_NG969v2431Q57auiIuVZclNIFpygANEKb0skATEvu51ftQhB1LZgKlGimDK-ZFBQMM6xhZeBrdHfiHtLwO0EebddmDzG6HoYpWzYDuVR0HuLT0Kch5wSNPaS2c-loKbGLDzv7sIsPu_jgfxoiUPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27893561</pqid></control><display><type>article</type><title>A genetic algorithm for cluster analysis</title><source>Business Source Complete</source><creator>Hruschka, Eduardo R. ; Ebecken, Nelson F.F.</creator><creatorcontrib>Hruschka, Eduardo R. ; Ebecken, Nelson F.F.</creatorcontrib><description>This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-2003-7103</identifier><language>eng</language><ispartof>Intelligent data analysis, 2003, Vol.7 (1), p.15-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c181t-3763495ada61eeef4789a5de2753c0007add4bb426d1072683b2541e8282f29d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Ebecken, Nelson F.F.</creatorcontrib><title>A genetic algorithm for cluster analysis</title><title>Intelligent data analysis</title><description>This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method.</description><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAYRS0EEqUwsmdCLAa_7YxReVWqxAISm-XYX0qQkxQ7GfrvSVSme4erc6WD0C0lD5xx_rh9qjAjhGNNCT9DKyo1xYIycz53YgwWSn9doqucfwghghGxQvdVsYcextYXLu6H1I7fXdEMqfBxyiOkwvUuHnObr9FF42KGm_9co8-X54_NG969v2431Q57auiIuVZclNIFpygANEKb0skATEvu51ftQhB1LZgKlGimDK-ZFBQMM6xhZeBrdHfiHtLwO0EebddmDzG6HoYpWzYDuVR0HuLT0Kch5wSNPaS2c-loKbGLDzv7sIsPu_jgfxoiUPk</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Hruschka, Eduardo R.</creator><creator>Ebecken, Nelson F.F.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2003</creationdate><title>A genetic algorithm for cluster analysis</title><author>Hruschka, Eduardo R. ; Ebecken, Nelson F.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-3763495ada61eeef4789a5de2753c0007add4bb426d1072683b2541e8282f29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Ebecken, Nelson F.F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hruschka, Eduardo R.</au><au>Ebecken, Nelson F.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genetic algorithm for cluster analysis</atitle><jtitle>Intelligent data analysis</jtitle><date>2003</date><risdate>2003</risdate><volume>7</volume><issue>1</issue><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method.</abstract><doi>10.3233/IDA-2003-7103</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1088-467X
ispartof Intelligent data analysis, 2003, Vol.7 (1), p.15-25
issn 1088-467X
1571-4128
language eng
recordid cdi_proquest_miscellaneous_27893561
source Business Source Complete
title A genetic algorithm for cluster analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genetic%20algorithm%20for%20cluster%20analysis&rft.jtitle=Intelligent%20data%20analysis&rft.au=Hruschka,%20Eduardo%20R.&rft.date=2003&rft.volume=7&rft.issue=1&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-2003-7103&rft_dat=%3Cproquest_cross%3E27893561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27893561&rft_id=info:pmid/&rfr_iscdi=true