A genetic algorithm for cluster analysis

This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2003, Vol.7 (1), p.15-25
Hauptverfasser: Hruschka, Eduardo R., Ebecken, Nelson F.F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a new approach to find the right clustering of a dataset. We have developed a genetic algorithm to perform this task. A simple encoding scheme that yields to constant-length chromosomes is used. The objective function maximizes both the homogeneity within each cluster and the heterogeneity among clusters. Besides, the clustering genetic algorithm also finds the right number of clusters according to the Average Silhouette Width criterion. We have also developed specific genetic operators that are context sensitive. Four examples are presented to illustrate the efficacy of the proposed method.
ISSN:1088-467X
1571-4128
DOI:10.3233/IDA-2003-7103