Global asymptotic stability in a perturbed higher-order linear difference equation

In this note, we give a sufficient condition for the global asymptotic stability of the zero solution of the difference equation χ(n+1)= ∑ i=0 k p 1(n)χ(n-i)+f(n,χ(n),χ(n-1),…,χ(n-1)), n=0,1,… where k and l are nonnegative integers, the coefficients p i ( n) are real numbers, and the nonlinearity f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2003-03, Vol.45 (6), p.1195-1202
1. Verfasser: Pituk, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we give a sufficient condition for the global asymptotic stability of the zero solution of the difference equation χ(n+1)= ∑ i=0 k p 1(n)χ(n-i)+f(n,χ(n),χ(n-1),…,χ(n-1)), n=0,1,… where k and l are nonnegative integers, the coefficients p i ( n) are real numbers, and the nonlinearity f satisfies the growth condition |f(n,χ0,χ1,…χl|≤q 0≤i≤lmax|χ i|, for n = 0,1… and χ iϵR 0≤i≤, where q is a constant. The stability condition is formulated in terms of the fundamental solution of the unperturbed equation y(n+1)= ∑ i=0 k p i(n)y(n-1).
ISSN:0898-1221
1873-7668
DOI:10.1016/S0898-1221(03)00084-1