Global asymptotic stability in a perturbed higher-order linear difference equation
In this note, we give a sufficient condition for the global asymptotic stability of the zero solution of the difference equation χ(n+1)= ∑ i=0 k p 1(n)χ(n-i)+f(n,χ(n),χ(n-1),…,χ(n-1)), n=0,1,… where k and l are nonnegative integers, the coefficients p i ( n) are real numbers, and the nonlinearity f...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2003-03, Vol.45 (6), p.1195-1202 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we give a sufficient condition for the global asymptotic stability of the zero solution of the difference equation
χ(n+1)=
∑
i=0
k
p
1(n)χ(n-i)+f(n,χ(n),χ(n-1),…,χ(n-1)),
n=0,1,…
where
k and
l are nonnegative integers, the coefficients
p
i
(
n) are real numbers, and the nonlinearity f satisfies the growth condition
|f(n,χ0,χ1,…χl|≤q
0≤i≤lmax|χ
i|,
for n = 0,1…
and
χ
iϵR
0≤i≤,
where
q is a constant. The stability condition is formulated in terms of the fundamental solution of the unperturbed equation
y(n+1)=
∑
i=0
k
p
i(n)y(n-1). |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/S0898-1221(03)00084-1 |