SoCube: an innovative end-to-end doublet detection algorithm for analyzing scRNA-seq data
Abstract Doublets formed during single-cell RNA sequencing (scRNA-seq) severely affect downstream studies, such as differentially expressed gene analysis and cell trajectory inference, and limit the cellular throughput of scRNA-seq. Several doublet detection algorithms are currently available, but t...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2023-05, Vol.24 (3) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Doublets formed during single-cell RNA sequencing (scRNA-seq) severely affect downstream studies, such as differentially expressed gene analysis and cell trajectory inference, and limit the cellular throughput of scRNA-seq. Several doublet detection algorithms are currently available, but their generalization performance could be further improved due to the lack of effective feature-embedding strategies with suitable model architectures. Therefore, SoCube, a novel deep learning algorithm, was developed to precisely detect doublets in various types of scRNA-seq data. SoCube (i) proposed a novel 3D composite feature-embedding strategy that embedded latent gene information and (ii) constructed a multikernel, multichannel CNN-ensembled architecture in conjunction with the feature-embedding strategy. With its excellent performance on benchmark evaluation and several downstream tasks, it is expected to be a powerful algorithm to detect and remove doublets in scRNA-seq data. SoCube is freely provided as an end-to-end tool on the Python official package site PyPi (https://pypi.org/project/socube/) and open-source on GitHub (https://github.com/idrblab/socube/). |
---|---|
ISSN: | 1467-5463 1477-4054 |
DOI: | 10.1093/bib/bbad104 |