GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition

In this study a thick hexagonal GaN layer has been grown on a (110) single crystalline diamond substrate utilising two different deposition techniques. Using an AlN nucleation layer, metal–organic chemical vapour deposition (MOCVD) has been used to deposit an initial GaN layer on a (110) single crys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2003-10, Vol.443 (1), p.9-13
Hauptverfasser: Hageman, P.R., Schermer, J.J., Larsen, P.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study a thick hexagonal GaN layer has been grown on a (110) single crystalline diamond substrate utilising two different deposition techniques. Using an AlN nucleation layer, metal–organic chemical vapour deposition (MOCVD) has been used to deposit an initial GaN layer on a (110) single crystal diamond substrate. The layer consists of closely packed GaN grains with a thickness of approximately 2.5 μm and with different orientations with respect to the substrate. Low temperature photoluminescence indicates a poor optical quality of the layer due to poor structural properties and/or a high incorporation of impurities. This layer was used as a template in a hydride vapour phase epitaxy (HVPE) growth experiment. As a result of this, the GaN grain size has increased enormously and the layer consists of large, hexagonal shaped pillars with a diameter of approximately 50 μm and a height of more than 100 μm protruding from a polycrystalline background having a more uniform thickness. PL spectra of this film show a strongly increased intensity of the exciton related emissions when compared to the MOCVD deposited film. X-Ray diffraction analyses revealed that the dominant orientation of the GaN crystallites perpendicular to the substrate changed from [001] for the thin MOCVD film to [112] for the HVPE layer.
ISSN:0040-6090
1879-2731
DOI:10.1016/S0040-6090(03)00906-4